Rioplatense 2019/L2/3

Evan Chen

Twitch Solves ISL

Episode 132

Problem

Let n be a positive integer. Let S be a multiset of $2 n+1$ numbers less or equal than 2^{n} with the following property: the product of any n numbers of S divides the product of the $n+1$ remaining numbers of S. Prove that S has at least 2 equal numbers.

Video

https://youtu.be/3X6YcQybomM

External Link

https://aops.com/community/p28630932

Solution

We start by analyzing a particular prime:
Claim. Let p be a fixed prime, and let

$$
e_{0} \leq \cdots \leq e_{2 n}
$$

be the ν_{p} 's of the elements of S. There exists an index k such that

$$
e_{k+1}=e_{k+2} \cdots=e_{k+2 n-e_{0}} .
$$

Proof. Write the above inequality as

$$
\sum_{i=1}^{n}\left(e_{n}-e_{i}\right)+\sum_{i=n+1}^{2 n}\left(e_{i}-e_{n}\right) \leq e_{0}
$$

where

$$
\begin{aligned}
& 0=e_{n}-e_{n} \leq e_{n}-e_{n-1} \leq e_{n}-e_{n-2} \leq \cdots \leq e_{n}-e_{1} \\
& 0 \leq e_{n+1}-e_{n} \leq e_{n+2}-e_{n} \leq \cdots \leq e_{2 n}-e_{n} .
\end{aligned}
$$

If we set $A=\sum_{i=1}^{n}\left(e_{n}-e_{i}\right)$ and $B=\sum_{i=n+1}^{2 n}\left(e_{i}-e_{n}\right)$, then in fact the smallest $n-A$ summands of A and the smallest $n-B$ summands of B must all be zero. These produce the $A+B \leq 2 n-e_{0}$ required indices.

We now proceed in two cases, by induction on n. The base cases $n=0,1,2$ are clear, so assume $n \geq 3$.

- Assume there is a prime p that doesn't divide every element of S (i.e. $e_{0}=0$ for some prime p in the claim's notation). Then by the above, in fact there is one element of S not divisible by p, say x, and all other elements of S have the same exponent of p. Pick any $y \in S$ with $y \neq x$ and apply induction hypothesis onto $\frac{1}{p} \cdot(S \backslash\{x, y\})$.
- Otherwise, assume we're in a situation where the primes p_{1}, \ldots, p_{m} appear with nonzero minimum multiplicities u_{1}, \ldots, u_{m}, respectively. Obviously we may assume $\sum u_{i} \leq n-1$, otherwise even the GCD of all the elements is at least $2^{u_{1}+\cdots+u_{m}}$. In particular, $\max \left(u_{i}\right) \leq n-1$; also (as $u_{i} \geq 1$) we have $m \leq n-1$.

Imagine the following algorithm. Write all elements of S on the blackboard. Then for $i=1, \ldots, m$, take the index promised by the claim for the prime p_{i}, and draw an X on all $u_{i}+1$ elements not corresponding to those e_{i} 's. If, after the algorithm ends, there are at least two numbers not X'ed out, we win.
However, the total number of X's is $\sum\left(u_{i}+1\right) \leq(n-1)+m=2 n-2$.

