IMO 1973/5

Evan Chen
Twitch Solves ISL
Episode 132

Problem

Let G be a group, each of whose elements is a nonconstant linear function from \mathbb{R} to itself, whose operation is function composition. Suppose that all elements of G have a fixed point. Show that all elements of G share a fixed point.

Video

https://youtu.be/mqkpYly4eg8

External Link

https://aops.com/community/p357910

Solution

Note that the only element of G of the form $x \mapsto x+\lambda$ is the identity.
Now consider any two non-identity functions of G, say

$$
\begin{aligned}
& f(x)=a x+b \\
& g(x)=c x+d
\end{aligned}
$$

so that $a \neq 1$ and $c \neq 1$. The (unique) fixed point of $a x+b$ is $\frac{b}{a-1}$ and the (unique) fixed point of $c x+d$ is $\frac{d}{c-1}$, so we just need to show

$$
\frac{b}{a-1}=\frac{d}{c-1}
$$

Note the inverses $f^{-1}(x)=\frac{x-b}{a}$ and $g^{-1}(x)=\frac{x-d}{c}$ should also be in G. Then consider the composition

$$
\begin{aligned}
g\left(f\left(g^{-1}\left(f^{-1}(x)\right)\right)\right) & =c \cdot\left[a \cdot \frac{\frac{x-b}{a}-d}{c}+b\right]+d \\
& =x-b-a d+b c+d
\end{aligned}
$$

Since this is an element of G, as we commented before we must have

$$
b-a d+b c+d=0
$$

which was what we wanted.

