ELMO SL 2023 G7
 Evan Chen

Twitch Solves ISL

Episode 132

Problem

Let \mathcal{E} be an ellipse with foci F_{1} and F_{2}, and let P be a point on \mathcal{E}. Suppose line $P F_{1}$ and $P F_{2}$ intersect \mathcal{E} again at distinct points A and B, and the tangents to \mathcal{E} at A and B intersect at point Q. Show that the midpoint of $\overline{P Q}$ lies on the circumcircle of $\triangle P F_{1} F_{2}$.

Video

https://youtu.be/S3z2LSt7zzY

External Link

https://aops.com/community/p28033735

Solution

Let $\rho=P F_{1}+P F_{2}=A F_{1}+A F_{2}=B F_{1}+B F_{2}$. We start with the following claim:
Claim. The P-excircles of triangle $P A F_{2}$ and $P F_{1} B$ coincide.
Proof. This follows from the fact that $\triangle P A F_{2}$ and $\triangle P B_{1}$ have the same perimeter, namely 2ρ.

Claim. That common excircle has center Q.
Proof. The tangency of $\overline{A Q}$ to the ellipse at the vertex of $\angle F_{1} A F_{2}$ implies that $\overline{A Q}$ is the external bisector of $\angle F_{1} A F_{2}$ (by the famous "river problem"). Similarly, $\overline{B Q}$ is the external bisector of $\angle F_{2} B F_{1}$.

Let A_{1} and A_{2} denote the reflections of P over F_{1} and F_{2}.

Claim. The points P, A_{1}, Q, A_{2} are concyclic.
Proof. Let T_{1} and T_{2} denote the tangency points of (Q) to $\overline{P A}$ and $\overline{P B}$. Note that

$$
P T_{1}+P T_{2}=2 P T_{1}=2 \rho=2\left(P F_{1}+P F_{2}\right)=P A_{1}+P A_{2} \Longrightarrow T_{1} A_{1}=T_{2} A_{2}
$$

so it follows that $\triangle Q T_{1} A_{1} \cong \triangle Q T_{2} A_{2}$ as right triangles, with the same orientation. In particular,

$$
\measuredangle P A_{1} Q=\measuredangle T_{1} A_{1} Q=\measuredangle T_{2} A_{2} Q=\measuredangle T_{1} A_{1} Q=\measuredangle P_{2} A_{2} Q .
$$

Finally, apply a homothety at P with ratio $\frac{1}{2}$ to deduce the problem statement.

