OMMC 2023/9 Evan Chen

TWITCH SOLVES ISL

Episode 131

Problem

Let ABC be a triangle with incircle ω . Let ω_1 , ω_2 , and ω_3 be three circles centered at A, B, and C respectively tangent to ω at points D, E, and F respectively. Show there exists a circle $\Gamma \neq \omega$ tangent to circles ω_1 , ω_2 , and ω_3 centered on the Euler line of $\triangle DEF$.

Video

https://youtu.be/tGv-hnYaKOs

External Link

https://aops.com/community/p27839254

Solution

Let $\triangle XYZ$ be the intouch triangle of *ABC*. Let $\triangle P_1P_2P_3$ be so that $\triangle DEF$ is its intouch triangle. Let K be the radical center of $\omega_1, \omega_2, \omega_3$.

Claim. $\overline{KP_1}$ is perpendicular to \overline{BXC} , etc.

Proof. P_1 lies on the radical axis of ω_2 and ω_3 , so $\overline{P_1K}$ is their radical axis and perpendicular to the line through the centers B and C.

Claim. *K* is actually the circumcenter of $\triangle P_1 P_2 P_3$.

Proof. Note that \overline{BC} and $\overline{P_2P_3}$ are antiparallel with respect to $\angle P_1P_2P_3$, from $\overline{DX} \perp \overline{EF}$.

Consequently, K lies on the Euler line of $\triangle DEF$, because the inverse of $(P_1P_2P_3)$ with respect to (DEF) is exactly the nine-point circle of $\triangle DEF$.

Finally, it's known that if $\Gamma \neq \omega$ is tangent to all three ω_i , then the line through the centers of Γ and ω passes through the radical center (in fact the radical center is either the insimilicenter or exsimilicenter). So that solves the problem.