OMMC 2023/9

Evan Chen

Twitch Solves ISL

Episode 131

Problem

Let $A B C$ be a triangle with incircle ω. Let ω_{1}, ω_{2}, and ω_{3} be three circles centered at A, B, and C respectively tangent to ω at points D, E, and F respectively. Show there exists a circle $\Gamma \neq \omega$ tangent to circles ω_{1}, ω_{2}, and ω_{3} centered on the Euler line of $\triangle D E F$.

Video

https://youtu.be/tGv-hnYaK0s

External Link

https://aops.com/community/p27839254

Solution

Let $\triangle X Y Z$ be the intouch triangle of $A B C$. Let $\triangle P_{1} P_{2} P_{3}$ be so that $\triangle D E F$ is its intouch triangle. Let K be the radical center of $\omega_{1}, \omega_{2}, \omega_{3}$.

Claim. $\overline{K P_{1}}$ is perpendicular to $\overline{B X C}$, etc.
Proof. P_{1} lies on the radical axis of ω_{2} and ω_{3}, so $\overline{P_{1} K}$ is their radical axis and perpendicular to the line through the centers B and C.

Claim. K is actually the circumcenter of $\triangle P_{1} P_{2} P_{3}$.
Proof. Note that $\overline{B C}$ and $\overline{P_{2} P_{3}}$ are antiparallel with respect to $\angle P_{1} P_{2} P_{3}$, from $\overline{D X} \perp$ $\overline{E F}$.

Consequently, K lies on the Euler line of $\triangle D E F$, because the inverse of $\left(P_{1} P_{2} P_{3}\right)$ with respect to $(D E F)$ is exactly the nine-point circle of $\triangle D E F$.

Finally, it's known that if $\Gamma \neq \omega$ is tangent to all three ω_{i}, then the line through the centers of Γ and ω passes through the radical center (in fact the radical center is either the insimilicenter or exsimilicenter). So that solves the problem.

