Cross Ops
 Evan Chen

Twitch Solves ISL
Episode 131

Problem

Given A, B, C, D, E on a line, define $f(P)=(A, B ; C, P)$. Construct points X and Y with a straight edge such that $f(X)=f(D) f(E)$ and $f(Y)=f(D)+f(E)$.

Video

https://youtu.be/gjQyGxUu4YY

Solution

Impose a coordinate system where $A=\infty, B=0, C=c, D=d, E=e$. In that case, if P has coordinate p, then

$$
f(P)=\frac{C A}{C B} \div \frac{D A}{D B}=\frac{p}{c} .
$$

We progressively give the following operations.
Claim. Given x and y, one can construct $\frac{x+y}{2}, 2 y-x$, and y^{2} / x.
Proof. Start by drawing any two other lines through $A=\infty$. See the following picture.

Follow red, green, blue in order.
We are initially given points D and E such that $f(D)=d / c$ and $f(E)=e / c$. The point

$$
X=2 \frac{d+e}{2}-0=d+e
$$

thus has $f(X)=\frac{d+e}{c}=f(D)+f(E)$. Meanwhile, the point

$$
Y=\frac{\frac{(d+e)^{2}}{c}-\frac{d^{2}}{c}-\frac{e^{2}}{c}}{2}=\frac{d e}{c}
$$

satisfies $f(Y)=\frac{d e}{c^{2}}=f(D) f(E)$. We're done.

