IMO 2023/3

Evan Chen

Twitch Solves ISL
Episode 130

Problem

For each integer $k \geq 2$, determine all infinite sequences of positive integers a_{1}, a_{2}, \ldots for which there exists a polynomial P of the form

$$
P(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{1} x+c_{0}
$$

where $c_{0}, c_{1}, \ldots, c_{k-1}$ are non-negative integers, such that

$$
P\left(a_{n}\right)=a_{n+1} a_{n+2} \cdots a_{n+k}
$$

for every integer $n \geq 1$.

Video

https://youtu.be/yGZUjUYTbzc

External Link

https://aops.com/community/p28097600

Solution

The answer is a_{n} being an arithmetic progression. Indeed, if $a_{n}=d(n-1)+a_{1}$ for $d \geq 0$ and $n \geq 1$, then

$$
a_{n+1} a_{n+2} \ldots a_{n+k}=\left(a_{n}+d\right)\left(a_{n}+2 d\right) \ldots\left(a_{n}+k d\right)
$$

so we can just take $P(x)=(x+d)(x+2 d) \ldots(x+k d)$.
The converse direction takes a few parts.
Claim. Either $a_{1}<a_{2}<\cdots$ or the sequence is constant.
Proof. Note that

$$
\begin{aligned}
P\left(a_{n-1}\right) & =a_{n} a_{n+1} \cdots a_{n+k-1} \\
P\left(a_{n}\right) & =a_{n+1} a_{n+2} \cdots a_{n+k} \\
\Longrightarrow a_{n+k} & =\frac{P\left(a_{n}\right)}{P\left(a_{n-1}\right)} \cdot a_{n} .
\end{aligned}
$$

Now the polynomial P is strictly increasing over \mathbb{N}.
So assume for contradiction there's an index n such that $a_{n}<a_{n-1}$. Then in fact the above equation shows $a_{n+k}<a_{n}<a_{n-1}$. Then there's an index $\ell \in[n+1, n+k]$ such that $a_{\ell}<a_{\ell-1}$, and also $a_{\ell}<a_{n}$. Continuing in this way, we can an infinite descending subsequence of $\left(a_{n}\right)$, but that's impossible because we assumed integers.

Hence we have $a_{1} \leq a_{2} \leq \cdots$. Now similarly, if $a_{n}=a_{n-1}$ for any index n, then $a_{n+k}=a_{n}$, ergo $a_{n-1}=a_{n}=a_{n+1}=\cdots=a_{n+k}$. So the sequence is eventually constant, and then by downwards induction, it is fully constant.

Claim. There exists a constant C (depending only P, k) such that we have $a_{n+1} \leq a_{n}+C$.
Proof. Let C be a constant such that $P(x)<x^{k}+C x^{k-1}$ for all $x \in \mathbb{N}$ (for example $C=c_{0}+c_{1}+\cdots+c_{k-1}+1$ works). We have

$$
\begin{aligned}
a_{n+k} & =\frac{P\left(a_{n}\right)}{a_{n+1} a_{n+2} \ldots a_{n+k-1}} \\
& <\frac{P\left(a_{n}\right)}{\left(a_{n}+1\right)\left(a_{n}+2\right) \ldots\left(a_{n}+k-1\right)} \\
& <\frac{a_{n}^{k}+C \cdot a_{n}^{k-1}}{\left(a_{n}+1\right)\left(a_{n}+2\right) \ldots\left(a_{n}+k-1\right)} \\
& <a_{n}+C+1 .
\end{aligned}
$$

Assume henceforth a_{n} is nonconstant, and hence unbounded. For each index n and term a_{n} in the sequence, consider the associated differences $d_{1}=a_{n+1}-a_{n}, d_{2}=a_{n+2}-a_{n+1}$, $\ldots, d_{k}=a_{n+k}-a_{n+k-1}$, which we denote by

$$
\Delta(n):=\left(d_{1}, \ldots, d_{k}\right) .
$$

This Δ can only take up to C^{k} different values. So in particular, some tuple $\left(d_{1}, \ldots, d_{n}\right)$ must appear infinitely often as $\Delta(n)$; for that tuple, we obtain

$$
P\left(a_{N}\right)=\left(a_{N}+d_{1}\right)\left(a_{N}+d_{1}+d_{2}\right) \ldots\left(a_{N}+d_{1}+\cdots+d_{k}\right)
$$

for infinitely many N. But because of that, we actually must have

$$
P(X)=\left(X+d_{1}\right)\left(X+d_{1}+d_{2}\right) \ldots\left(X+d_{1}+\cdots+d_{k}\right) .
$$

However, this also means that exactly one output to Δ occurs infinitely often (because that output is determined by P). Consequently, it follows that Δ is eventually constant. For this to happen, a_{n} must eventually coincide with an arithmetic progression of some common difference d, and $P(X)=(X+d)(X+2 d) \ldots(X+k d)$. Finally, this implies by downwards induction that a_{n} is an arithmetic progression on all inputs.

