IMC 2023/2
 Evan Chen
 Twitch Solves ISL
 Episode 130

Problem

Let A, B and C be $n \times n$ matrices with complex entries satisfying

$$
A^{2}=B^{2}=C^{2} \text { and } B^{3}=A B C+2 \mathrm{id}
$$

Prove that $A^{6}=\mathrm{id}$.

Video

https://youtu.be/JKne3A1Pu8o

External Link

https://aops.com/community/p28295670

Solution

We start with the following claim:
Claim. We have $A=-C$ and $B^{2}=-A C$.
Proof. We started with

$$
\begin{aligned}
B^{5} & =A B C B^{2}+2 B^{2}=A B C^{3}+2 C^{2}=A B^{3} C+2 C^{2} \\
& =A(A B C+2) C+2 C^{2}=B^{5}+2 A C+2 C^{2} \\
\Longrightarrow 0 & =A C+C^{2} .
\end{aligned}
$$

Following the analogous argument gives

$$
A^{2}=B^{2}=C^{2}=-A C .
$$

Now we have

$$
-B A C=-A C B=A B C+2
$$

Notice that this means that $-2=(A B+B A) C$, so C is invertible. Combined with the claim that $A C+C^{2}=0$, this gives $A=-C$.

Now squaring both sides of $B^{3}=-A B A+2$ gives

$$
\begin{aligned}
B^{6} & =A B A^{2} B A-4 A B A+4=A B^{4} A+4 B^{3}-4 \\
& =A\left(A^{2}\right)\left(A^{2}\right) A+4 B^{3}-4 \\
& =A^{6}+4 B^{3}+4=B^{6}+4 B^{3}+4
\end{aligned}
$$

and hence $B^{3}=-\mathrm{id}$, so $A^{6}=B^{6}=\mathrm{id}$.

