ELMO SL 2023 G1
 Evan Chen

Twitch Solves ISL

Episode 130

Problem

Let $A B C D E$ be a regular pentagon. Let P be a variable point on the interior of segment $A B$ such that $P A \neq P B$. The circumcircles of $\triangle P A E$ and $\triangle P B C$ meet again at Q. Let R be the circumcenter of $\triangle D P Q$. Show that as P varies, R lies on a fixed line.

Video

https://youtu.be/wMdc6hUhhaA

External Link

https://aops.com/community/p28033718

Solution

In fact, the condition that $A B C D E$ is regular is needlessly strong. The conclusion holds for any cyclic pentagon.

Claim. D, P, Q, M are cyclic.
Proof. Let $T:=\overline{A E} \cap \overline{B C}$ and let $\overline{D T}$ meet the circumcircle of the pentagon again at M. Since $T A \cdot T E=T B \cdot T C$, it follows T lies on the radical axis $\overline{P Q}$. Then $T P \cdot T Q=T M \cdot T D$.

Hence R lies on the perpendicular bisector of $\overline{D M}$, which does not depend on the choice of P and is thus the desired fixed line.

Remark. We also never used the fact that P lies on line $A B$.

