IMO 2023/4

Evan Chen

Twitch Solves ISL
Episode 129

Problem

Let $x_{1}, x_{2}, \ldots, x_{2023}$ be pairwise different positive real numbers such that

$$
a_{n}=\sqrt{\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right)}
$$

is an integer for every $n=1,2, \ldots, 2023$. Prove that $a_{2023} \geq 3034$.

Video

https://youtu.be/vDG6i7LmiFU

External Link

https://aops.com/community/p28104298

Solution

Note that $a_{n+1}>\sqrt{\sum_{1}^{n} x_{i} \sum_{1}^{n} \frac{1}{x_{i}}}=a_{n}$ for all n, so that $a_{n+1} \geq a_{n}+1$. Observe $a_{1}=1$.
We are going to prove that

$$
a_{2 m+1} \geq 3 m+1 \quad \text { for all } m \geq 0
$$

by induction on m, with the base case being clear.
We now present two variations of the induction. The first shorter solution compares a_{n+2} directly to a_{n}, showing it increases by at least 3 . Then we give a longer approach that compares a_{n+1} to a_{n}, and shows it cannot increase by 1 twice in a row.

Induct-by-two solution. Let $u=\sqrt{\frac{x_{n+1}}{x_{n+2}}} \neq 1$. Note that by using Cauchy-Schwarz with three terms:

$$
\begin{aligned}
a_{n+2}^{2} & =\left[\left(x_{1}+\cdots+x_{n}\right)+x_{n+1}+x_{n+2}\right]\left[\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right)+\frac{1}{x_{n+2}}+\frac{1}{x_{n+1}}\right] \\
& \geq\left(\sqrt{\left(x_{1}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right)}+\sqrt{\frac{x_{n+1}}{x_{n+2}}}+\sqrt{\frac{x_{n+2}}{x_{n+1}}}\right)^{2} \\
& =\left(a_{n}+u+\frac{1}{u}\right)^{2} . \\
\Longrightarrow a_{n+2} & \geq a_{n}+u+\frac{1}{u}>a_{n}+2
\end{aligned}
$$

where the last equality $u+\frac{1}{u}>2$ is by AM-GM, strict as $u \neq 1$. It follows that $a_{n+2} \geq a_{n}+3$, completing the proof.

Induct-by-one solution. The main claim is:
Claim. It's impossible to have $a_{n}=c, a_{n+1}=c+1, a_{n+2}=c+2$ for any c and n.
Proof. Let $p=x_{n+1}$ and $q=x_{n+2}$ for brevity. Let $s=\sum_{1}^{n} x_{i}$ and $t=\sum_{1}^{n} \frac{1}{x_{n}}$, so $c^{2}=a_{n}^{2}=s t$.

From $a_{n}=c$ and $a_{n+1}=c$ we have

$$
\begin{aligned}
(c+1)^{2} & =a_{n+1}^{2}=(p+s)\left(\frac{1}{p}+t\right) \\
& =s t+p t+\frac{1}{p} s+1=c^{2}+p t+\frac{1}{p} s+1 \\
& \stackrel{\text { AM-GM }}{\geq} c^{2}+2 \sqrt{s t}+1=c^{2}+2 \sqrt{c^{2}}+1=(c+1)^{2} .
\end{aligned}
$$

Hence, equality must hold in the AM-GM we must have exactly

$$
p t=\frac{1}{p} s=c
$$

If we repeat the argument again on $a_{n+1}=c+1$ and $a_{n+2}=c_{n+2}$, then

$$
p\left(\frac{1}{q}+t\right)=\frac{1}{p}(q+s)=c+1
$$

However this forces $\frac{p}{q}=\frac{q}{p}=1$ which is impossible.

