IMO 2023/4 Evan Chen

TWITCH SOLVES ISL

Episode 129

Problem

Let $x_1, x_2, \ldots, x_{2023}$ be pairwise different positive real numbers such that

$$a_n = \sqrt{(x_1 + x_2 + \dots + x_n)\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)}$$

is an integer for every $n = 1, 2, \ldots, 2023$. Prove that $a_{2023} \ge 3034$.

Video

https://youtu.be/vDG6i7LmiFU

External Link

https://aops.com/community/p28104298

Solution

Note that $a_{n+1} > \sqrt{\sum_{i=1}^{n} x_i \sum_{i=1}^{n} \frac{1}{x_i}} = a_n$ for all n, so that $a_{n+1} \ge a_n + 1$. Observe $a_1 = 1$. We are going to prove that

$$a_{2m+1} \ge 3m+1$$
 for all $m \ge 0$

by induction on m, with the base case being clear.

We now present two variations of the induction. The first shorter solution compares a_{n+2} directly to a_n , showing it increases by at least 3. Then we give a longer approach that compares a_{n+1} to a_n , and shows it cannot increase by 1 twice in a row.

Induct-by-two solution. Let $u = \sqrt{\frac{x_{n+1}}{x_{n+2}}} \neq 1$. Note that by using Cauchy-Schwarz with three terms:

$$\begin{aligned} a_{n+2}^2 &= \left[\left(x_1 + \dots + x_n \right) + x_{n+1} + x_{n+2} \right] \left[\left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) + \frac{1}{x_{n+2}} + \frac{1}{x_{n+1}} \right] \\ &\geq \left(\sqrt{\left(x_1 + \dots + x_n \right) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right)} + \sqrt{\frac{x_{n+1}}{x_{n+2}}} + \sqrt{\frac{x_{n+2}}{x_{n+1}}} \right)^2 \\ &= \left(a_n + u + \frac{1}{u} \right)^2 . \\ &\Rightarrow a_{n+2} \ge a_n + u + \frac{1}{u} > a_n + 2 \end{aligned}$$

where the last equality $u + \frac{1}{u} > 2$ is by AM-GM, strict as $u \neq 1$. It follows that $a_{n+2} \ge a_n + 3$, completing the proof.

Induct-by-one solution. The main claim is:

Claim. It's impossible to have $a_n = c$, $a_{n+1} = c+1$, $a_{n+2} = c+2$ for any c and n. *Proof.* Let $p = x_{n+1}$ and $q = x_{n+2}$ for brevity. Let $s = \sum_{i=1}^{n} x_i$ and $t = \sum_{i=1}^{n} \frac{1}{x_n}$, so $c^2 = a_n^2 = st$.

From $a_n = c$ and $a_{n+1} = c$ we have

$$(c+1)^{2} = a_{n+1}^{2} = (p+s)\left(\frac{1}{p}+t\right)$$

= $st + pt + \frac{1}{p}s + 1 = c^{2} + pt + \frac{1}{p}s + 1$
 $\stackrel{\text{AM-GM}}{\geq} c^{2} + 2\sqrt{st} + 1 = c^{2} + 2\sqrt{c^{2}} + 1 = (c+1)^{2}.$

Hence, equality must hold in the AM-GM we must have exactly

$$pt = \frac{1}{p}s = c.$$

If we repeat the argument again on $a_{n+1} = c+1$ and $a_{n+2} = c_{n+2}$, then

$$p\left(\frac{1}{q}+t\right) = \frac{1}{p}\left(q+s\right) = c+1.$$

However this forces $\frac{p}{q} = \frac{q}{p} = 1$ which is impossible.