IMO 2023/2

Evan Chen

Twitch Solves ISL

Episode 129

Problem

Let $A B C$ be an acute-angled triangle with $A B<A C$. Let Ω be the circumcircle of $A B C$. Let S be the midpoint of the arc $C B$ of Ω containing A. The perpendicular from A to $B C$ meets $B S$ at D and meets Ω again at $E \neq A$. The line through D parallel to $B C$ meets line $B E$ at L. Denote the circumcircle of triangle $B D L$ by ω. Let ω meet Ω again at $P \neq B$. Prove that the line tangent to ω at P meets line $B S$ on the internal angle bisector of $\angle B A C$.

Video

https://youtu.be/Alz20WHH7QY

External Link

https://aops.com/community/p28097552

Solution

Claim. We have $L P S$ collinear.
Proof. Because $\measuredangle L P B=\measuredangle L D B=\measuredangle C B D=\measuredangle C B S=\measuredangle S C B=\measuredangle S P B$.
Let F be the antipode of A, so $A M F S$ is a rectangle.
Claim. We have $P D F$ collinear. (This lets us erase L.)
Proof. Because $\measuredangle S P D=\measuredangle L P D=\measuredangle L B D=\measuredangle S B E=\measuredangle F C S=\measuredangle F P S$.
Let us define $X=\overline{A M} \cap \overline{B S}$ and complete chord $\overline{P X Q}$. We aim to show that $\overline{P X Q}$ is tangent to $(P D L B)$.

Claim (Main projective claim). We have $X P=X A$.
Proof. Introduce $Y=\overline{P D F} \cap \overline{A M}$. Note that

$$
-1=(S M ; E F) \stackrel{A}{=}(S, X ; D, \overline{A F} \cap \overline{E S}) \stackrel{F}{=}(\infty X ; Y A)
$$

where $\infty=\overline{A M} \cap \overline{S F}$ is at infinity (because $A M S F$ is a rectangle). Thus, $X Y=X A$.

Since $\triangle A P Y$ is also right, we get $X P=X A$.
Alternative proof of claim without harmonic bundles, from Solution 9 of the marking scheme. With $Y=\overline{P D F} \cap \overline{A M}$ defined as before, note that $\overline{A E} \| \overline{S M}$ and $\overline{A M} \| \overline{S F}$ (as $A M F S$ is a rectangle) gives respectively the similar triangles

$$
\triangle A X D \sim \triangle M X S, \quad \triangle X D Y \sim \triangle S D F .
$$

From this we conclude

$$
\frac{A X}{X D}=\frac{A X+X M}{X D+S X}=\frac{A M}{S D}=\frac{S F}{S D}=\frac{X Y}{X D} .
$$

So $A X=X Y$ and as before we conclude $X P=X A$.
From $X P=X A$, we conclude that $\overparen{P M}$ and $\overparen{A Q}$ have the same measure. Since $\overparen{A S}$ and $\widehat{E M}$ have the same measure, it follows $\widehat{P E}$ and $\widehat{S Q}$ have the same measure. The desired tangency then follows from

$$
\measuredangle Q P L=\measuredangle Q P S=\measuredangle P Q E=\measuredangle P F E=\measuredangle P D L .
$$

Remark (Logical ordering). This solution is split into two phases: the "synthetic phase" where we do a bunch of angle chasing, and the "projective phase" where we use cross-ratios because I like projective. For logical readability (so we write in only one logical direction), the projective phase is squeezed in two halves of the synthetic phase, but during an actual solve it's expected to complete the whole synthetic phase first (i.e. to reduce the problem to show $X P=X A$).

Remark. There are quite a multitude of approaches for this problem; the marking scheme for this problem at the actual IMO had 13 different solutions.

