IMO 2023/1

Evan Chen

Twitch Solves ISL

Episode 129

Problem

Determine all composite integers $n>1$ that satisfy the following property: if $d_{1}<d_{2}<$ $\cdots<d_{k}$ are all the positive divisors of n with then d_{i} divides $d_{i+1}+d_{i+2}$ for every $1 \leq i \leq k-2$.

Video

https://youtu.be/Z7G7bSGfrqU

External Link

https://aops.com/community/p28097575

Solution

The answer is prime powers.
Verification that these work. When $n=p^{e}$, we get $d_{i}=p^{i-1}$. The $i^{\text {th }}$ relationship reads

$$
p^{i-1} \mid p^{i}+p^{i+1}
$$

which is obviously true.
Proof that these are the only answers. Conversely, suppose n has at least two distinct prime divisors. Let $p<q$ denote the two smallest ones, and let p^{e} be the largest power of p which both divides n and is less than q, hence $e \geq 1$. Then the smallest factors of n are $1, p, \ldots, p^{e}, q$. So we are supposed to have

$$
\frac{n}{q} \left\lvert\, \frac{n}{p^{e}}+\frac{n}{p^{e-1}}=\frac{(p+1) n}{p^{e}}\right.
$$

which means that the ratio

$$
\frac{q(p+1)}{p^{e}}
$$

needs to be an integer, which is obviously not possible.

