Twitch 125.4

Evan Chen

Twitch Solves ISL
Episode 125

Problem

In triangle $A B C$, let I be the incenter, and let D be the incircle touch point to $B C$. Consider the circle ω tangent to $A I$ at I passing through D; it intersects the incircle again at a point X. Show that the other intersection of $A X$ with the circumcircle also lies on ω.

Video

https://youtu.be/3Dd8R3u_8H6BM

Solution

We define many points:

- Let E be the antipode of D on the incircle.
- Let F be the reflection of E across $\overline{A I}$.
- Let M be the minor arc midpoint of $\overline{B C}$, and N the major arc midpoint.
- Let $K=\overline{A I M} \cap \overline{B C}$.
- Let T be the contact point of the A-mixtilinear incircle. We will use the following known properties of T :
- DKTM is cyclic,
- T lies on line $I N$
$-\overline{A T}$ is isogonal to the A-Nagel cevian.
See figure below.

There are two main claims in the problem.
Claim. (DIT) is tangent to $\overline{A I K M}$ at I.
Proof. By angle chasing, because

$$
\measuredangle I D T=\measuredangle K D T+90^{\circ}=\measuredangle K M T+90^{\circ}=\frac{1}{2} \widehat{A T}+90^{\circ}=\frac{1}{2} \widehat{A T}+\frac{1}{2} \widehat{M N}=\measuredangle A I T .
$$

Here arcs are directed modulo 360°.
Claim. (FID) is tangent to $\overline{A I K M}$ at I.

Proof. This is obvious from the fact that $I F=I D$ and $\overline{I F}$ and $\overline{I D}$ are reflections through line $\overline{A I K M}$.

Claim. Points A, F, T are collinear.
Proof. $\overline{A F}$ is isogonal to $\overline{A E}$ because they're symmetric around line $\overline{A I}$. Meanwhile, $\overline{A E}$ is the A-Nagel cevian, which is isogonal to $\overline{A T}$.

Hence, the point X in the problem statement is F, and the "other intersection" mentioned by the problem is T. We're done.

