Twitch 125.4 Evan Chen

TWITCH SOLVES ISL

Episode 125

Problem

In triangle ABC, let I be the incenter, and let D be the incircle touch point to BC. Consider the circle ω tangent to AI at I passing through D; it intersects the incircle again at a point X. Show that the other intersection of AX with the circumcircle also lies on ω .

Video

https://youtu.be/3Dd8R3u_8H6BM

Solution

We define many points:

- Let E be the antipode of D on the incircle.
- Let F be the reflection of E across \overline{AI} .
- Let M be the minor arc midpoint of \overline{BC} , and N the major arc midpoint.
- Let $K = \overline{AIM} \cap \overline{BC}$.
- Let T be the contact point of the A-mixtilinear incircle. We will use the following known properties of T:
 - DKTM is cyclic,
 - -T lies on line IN
 - $-\overline{AT}$ is isogonal to the A-Nagel cevian.

See figure below.

There are two main claims in the problem.

Claim. (DIT) is tangent to \overline{AIKM} at I.

Proof. By angle chasing, because

$$\measuredangle IDT = \measuredangle KDT + 90^\circ = \measuredangle KMT + 90^\circ = \frac{1}{2}\widehat{AT} + 90^\circ = \frac{1}{2}\widehat{AT} + \frac{1}{2}\widehat{MN} = \measuredangle AIT.$$

Here arcs are directed modulo $360^\circ.$

Claim. (FID) is tangent to \overline{AIKM} at I.

Proof. This is obvious from the fact that IF = ID and \overline{IF} and \overline{ID} are reflections through line \overline{AIKM} .

Claim. Points A, F, T are collinear.

Proof. \overline{AF} is isogonal to \overline{AE} because they're symmetric around line \overline{AI} . Meanwhile, \overline{AE} is the A-Nagel cevian, which is isogonal to \overline{AT} .

Hence, the point X in the problem statement is F, and the "other intersection" mentioned by the problem is T. We're done.