Twitch 125.2

Evan Chen

Twitch Solves ISL
Episode 125

Problem

Regular hexagon $A B C D E F$ is drawn, and a point P inside this hexagon satisfies $[P A B]=6,[P C D]=10$, and $[P E F]=11$. Compute $[P B C][P D E][P F A]$.

Video

https://youtu.be/3DdyaBnRYPN30

Solution

Let x denote the side length of the hexagon, so the heights from P to $A B, C D, E F$ are $\frac{12}{x}, \frac{20}{x}, \frac{22}{x}$ respectively. Let h_{1}, h_{2}, h_{3} be the heights from P to $B C, D E, F A$; then

$$
\begin{aligned}
\sqrt{3} x & =\frac{12}{x}+h_{1} \\
& =\frac{20}{x}+h_{2} \\
& =\frac{22}{x}+h_{3} .
\end{aligned}
$$

On the other hand, by considering the equilateral triangles formed by extending the sides of the hexagon (or quoting Vivani theorem),

$$
h_{1}+h_{2}+h_{3}=\frac{12}{x}+\frac{20}{x}+\frac{22}{x} .
$$

Hence, it follows that

$$
3 \cdot \sqrt{3} x=2\left(\frac{12}{x}+\frac{20}{x}+\frac{22}{x}\right)
$$

so $x^{2}=12 \sqrt{3}$.
To finish up, compute

$$
\begin{aligned}
{[P D E]=\frac{1}{2} x \cdot h_{1} } & =\frac{\sqrt{3}}{2} x^{2}-6=12 \\
{[P F A]=\frac{1}{2} x \cdot h_{2} } & =\frac{\sqrt{3}}{2} x^{2}-10=8 \\
{[P B C]=\frac{1}{2} x \cdot h_{3} } & =\frac{\sqrt{3}}{2} x^{2}-11=7
\end{aligned}
$$

giving answer $12 \cdot 8 \cdot 7=672$.

