Iran TST 2021/2/4

Evan Chen

Twitch Solves ISL

Episode 125

Problem

Find all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ such that for all triples a, b, c of positive integers the following holds:

$$
f(a c)+f(b c)-f(c) f(a b) \geq 1 .
$$

Video

https://youtu.be/3D5R2FHB0MVz0

External Link

https://aops.com/community/p22052363

Solution

The answer is $f \equiv 1$ only, which works. Conversely, let $P(a, b, c)$ be the statement.

- From $P(1,1,1)$ we get $0 \geq(f(1)-1)^{2} \Longrightarrow f(1)=1$
- From $P(1,1, c)$ we get $f(c) \geq 1$.

Then, note that $P(x, x, x)$ gives the statement

$$
\begin{aligned}
f\left(x^{2}\right)+f\left(x^{2}\right)-f(x) f\left(x^{2}\right) & \geq 1 \\
\Longrightarrow(2-f(x)) f\left(x^{2}\right) & \geq 1 \\
\Longrightarrow 2-f(x) & \geq \frac{1}{f\left(x^{2}\right)} \\
\Longrightarrow f(x) & \leq 2-\frac{1}{f\left(x^{2}\right)}
\end{aligned}
$$

since f only takes positive values.
In particular, this implies that

- we have $f(n) \leq 2$ for all $n \geq 1$;
- we have $f(n) \leq \frac{3}{2}$ for all $n \geq 1$ (by using the previous statement to get $f\left(n^{2}\right) \leq 2$);
- we have $f(n) \leq \frac{4}{3}$ for all $n \geq 1$ (again by previous);
- we have $f(n) \leq \frac{5}{4}$ for all $n \geq 1$ (again by previous);
- and so on.

It follows that $f(n)=1$.
Remark. Note that the problem statement is only ever used when $a=b$.

