Iran TST 2021/2/4 Evan Chen

TWITCH SOLVES ISL

Episode 125

Problem

Find all functions $f: \mathbb{N} \to \mathbb{R}$ such that for all triples a, b, c of positive integers the following holds:

 $f(ac) + f(bc) - f(c)f(ab) \ge 1.$

Video

https://youtu.be/3D5R2FHB0MVz0

External Link

https://aops.com/community/p22052363

Solution

The answer is $f \equiv 1$ only, which works. Conversely, let P(a, b, c) be the statement.

- From P(1,1,1) we get $0 \ge (f(1)-1)^2 \implies f(1)=1$
- From P(1, 1, c) we get $f(c) \ge 1$.

Then, note that P(x, x, x) gives the statement

$$f(x^2) + f(x^2) - f(x)f(x^2) \ge 1$$

$$\implies (2 - f(x)) f(x^2) \ge 1$$

$$\implies 2 - f(x) \ge \frac{1}{f(x^2)}$$

$$\implies f(x) \le 2 - \frac{1}{f(x^2)}$$

since f only takes positive values.

In particular, this implies that

- we have $f(n) \leq 2$ for all $n \geq 1$;
- we have $f(n) \leq \frac{3}{2}$ for all $n \geq 1$ (by using the previous statement to get $f(n^2) \leq 2$);
- we have $f(n) \leq \frac{4}{3}$ for all $n \geq 1$ (again by previous);
- we have $f(n) \leq \frac{5}{4}$ for all $n \geq 1$ (again by previous);
- and so on.

It follows that f(n) = 1.

Remark. Note that the problem statement is only ever used when a = b.