Twitch 124.3

Evan Chen

Twitch Solves ISL
Episode 124

Problem

Let $\triangle A B C$ be a right triangle with right angle B with incenter I and intouch triangle $\triangle D E F$. Let the circle with center B containing D and F intersect the circumcircle at M and N. Let X and Y be the intersection point of $\overline{M N}$ with $\overline{I D}$ and $\overline{I F}$ respectively. Show that X, Y, the midpoint of $A B$, and the midpoint of $B C$, are concyclic.

Video

https://youtu.be/f4F7tDglpzA

Solution

Let M_{a}, O, M_{c} be the midpoints of $A B C$. Then let T be the midpoint of minor arc $\widehat{B C}$.

Claim. $D M_{a}=M_{a} T$.
Proof. In the usual notation, $D M_{a}=B M_{a}-B D=\frac{a}{2}-\frac{b+c-a}{2}=\frac{b-c}{2}$, while $M_{a} T=$ $O T-O M_{a}=\frac{b}{2}-\frac{c}{2}$.

Claim. $D Y T M_{a}$ is a square.
Proof. Let Y^{\prime} be the point such that $D M_{a} T Y^{\prime}$ is a square. Then $Y^{\prime} T^{2}=Y^{\prime} D^{2}$, while $Y^{\prime} T$ is automatically tangent to $(A B C)$ and $Y^{\prime} D$ is automatically tangent to the circle centered at B with radius $B D=B F$. So $Y^{\prime}=Y$.

Hence $D Y=D M_{a}$, and Y is the reflection of M_{a} around the line $\overline{D F}$. The same is true for X, so $X M_{c} M_{a} Y$ is an isosceles trapezoid symmetric around line $\overline{D F}$.

