Longlist 1985/19

Evan Chen

Twitch Solves ISL

Episode 124

Problem

Solve over \mathbb{R} the system of simultaneous equations

$$
\begin{aligned}
\sqrt{x}-\frac{1}{y}-2 w+3 z & =1, \\
x+\frac{1}{y^{2}}-4 w^{2}-9 z^{2} & =3 \\
x \sqrt{x}-\frac{1}{y^{3}}-8 w^{3}+27 z^{3} & =-5, \\
x^{2}+\frac{1}{y^{4}}-16 w^{4}-81 z^{4} & =15
\end{aligned}
$$

Video

https://youtu.be/V_tTeGYaVAk

External Link

https://aops.com/community/p2014940

Solution

Let $a=\sqrt{x}, b=-1 / y, c=2 w, d=-3 z$.

$$
\begin{aligned}
a+b-c-d & =1 \\
a^{2}+b^{2}-c^{2}-d^{2} & =3 \\
a^{3}+b^{3}-c^{3}-d^{3} & =-5 \\
a^{4}+b^{4}-c^{4}-d^{4} & =15 .
\end{aligned}
$$

This condition is the same as saying

$$
a^{n}+b^{n}+(-1)^{n}+(-1)^{n}=c^{n}+d^{n}+(-2)^{n}+1^{n} \quad n=1,2,3,4
$$

which is equivalent to saying the multiset $\{a, b,-1,-1\}$ is the same as the multiset $\{c, d,-2,1\}$, (because Newton's formulas imply the polynomials with these roots have the same coefficients). Therefore, $\{a, b\}=\{-2,1\}$ while $c=d=-1$.

Going back, with $a>0$ this gives only one solution, which evidently works:

$$
(x, y, w, z)=(1,1 / 2,-1 / 2,1 / 3)
$$

