Longlist 1985/19 Evan Chen

TWITCH SOLVES ISL

Episode 124

Problem

Solve the system of simultaneous equations

$$\sqrt{x} - \frac{1}{y} - 2w + 3z = 1,$$

$$x + \frac{1}{y^2} - 4w^2 - 9z^2 = 3,$$

$$x\sqrt{x} - \frac{1}{y^3} - 8w^3 + 27z^3 = -5,$$

$$x^2 + \frac{1}{y^4} - 16w^4 - 81z^4 = 15.$$

Video

https://youtu.be/V_tTeGYaVAk

External Link

https://aops.com/community/p2014940

Solution

Let $a = \sqrt{x}, b = -1/y, c = 2w, d = -3z.$

$$a + b - c - d = 1$$

$$a^{2} + b^{2} - c^{2} - d^{2} = 3$$

$$a^{3} + b^{3} - c^{3} - d^{3} = -5$$

$$a^{4} + b^{4} - c^{4} - d^{4} = 15.$$

This condition is the same as saying

$$a^{n} + b^{n} + (-1)^{n} + (-1)^{n} = c^{n} + d^{n} + (-2)^{n} + 1^{n}$$
 $n = 1, 2, 3, 4$

which is equivalent to saying the multiset $\{a, b, -1, -1\}$ is the same as the multiset $\{c, d, -2, 1\}$, (because Newton's formulas imply the polynomials with these roots have the same coefficients). Therefore, $\{a, b\} = \{-2, 1\}$ while c = d = -1.

Going back, with a > 0 this gives only one solution, which evidently works:

$$(x, y, w, z) = (1, 1/2, -1/2, 1/3).$$