Florida 2023B

Evan Chen

TWITCH SOLVES ISL

Episode 124

Problem

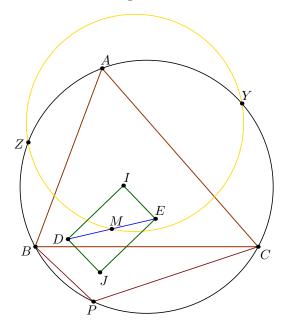
Given a fixed acute triangle, a variable point P lies on arc BC not containing A of the circumcircle of $\triangle ABC$. Let D and E be the incenters of ABP and ACP, respectively. As P varies on arc BC, show that the midpoint of \overline{DE} lies on a fixed circle.

Video

https://youtu.be/NUyidWDwNls

Solution

Let I and J denote the incenters of triangles ABC and PBC.



We appeal to the following result, available here or here:

Theorem (Japanese theorem for cyclic quadrilaterals). DIEJ is a rectangle.

Now I is fixed, and J moves on a fixed circle (because $\angle BJC = 90^{\circ} + \frac{1}{2}\angle BPC$ is fixed). So the midpoint of \overline{IJ} moves along on a circle, as needed.