Florida 2023B

 Evan Chen

 Evan Chen}

Twitch Solves ISL
Episode 124

Problem

Given a fixed acute triangle, a variable point P lies on arc $B C$ not containing A of the circumcircle of $\triangle A B C$. Let D and E be the incenters of $A B P$ and $A C P$, respectively. As P varies on $\operatorname{arc} B C$, show that the midpoint of $\overline{D E}$ lies on a fixed circle.

Video

https://youtu.be/NUyidWDwN1s

Solution

Let I and J denote the incenters of triangles $A B C$ and $P B C$.

We appeal to the following result, available here or here:
Theorem (Japanese theorem for cyclic quadrilaterals). DIEJ is a rectangle.
Now I is fixed, and J moves on a fixed circle (because $\angle B J C=90^{\circ}+\frac{1}{2} \angle B P C$ is fixed). So the midpoint of $\overline{I J}$ moves along on a circle, as needed.

