EGMO 2023/2

Evan Chen
Twitch Solves ISL

Episode 124

Problem

We are given an acute triangle $A B C$. Let D be the point on its circumcircle such that $A D$ is a diameter. Suppose that points K and L lie on segments $A B$ and $A C$, respectively, and that $D K$ and $D L$ are tangent to circle $A K L$. Show that line $K L$ passes through the orthocenter of triangle $A B C$.

Video

https://youtu.be/Gf_gS-scjoo

External Link

https://aops.com/community/p27523016

Solution

The problem consists of two disjoint "halves": the symmedian picture with $\triangle A K L$ and symmedian $\overline{A D}$, and the orthocenter picture with $\triangle A B C$ and diameter $\overline{A D}$. They are colored blue and red below, respectively.

Let M be the midpoint of $\overline{K L}$.
Claim (Blue part of the figure). Lines $\overline{A M}$ and $\overline{A D}$ are isogonal to $\angle A$, and $A M=$ $A D \cdot \cos A$.

Proof. First part follows from $\overline{A D}$ being the A-symmedian. It's also a standard fact that $A M \cdot A D=A K \cdot A L$ (e.g. by $\sqrt{b c}$ inversion); so it suffices to prove $A M^{2}=A K \cdot A L \cos A$. This follows by Stewart's theorem to get $A M$ together with the law of $\operatorname{cosines} \cos A=$ $\frac{A K^{2}+A L^{2}-K L^{2}}{2 \cdot A K \cdot A L}$.

Let H denote the orthocenter.
Claim (Red part of the figure). Lines $\overline{A H}$ and $\overline{A O}$ are isogonal to $\angle A$, and $A H=$ $A D \cdot \cos A$.

Proof. Both parts are well-known.
The two claims together imply $H=M$ and we're done.

