EGMO 2023/2 Evan Chen

TWITCH SOLVES ISL

Episode 124

Problem

We are given an acute triangle ABC. Let D be the point on its circumcircle such that AD is a diameter. Suppose that points K and L lie on segments AB and AC, respectively, and that DK and DL are tangent to circle AKL. Show that line KL passes through the orthocenter of triangle ABC.

Video

https://youtu.be/Gf_gS-scjoo

External Link

https://aops.com/community/p27523016

Solution

The problem consists of two disjoint "halves": the symmedian picture with $\triangle AKL$ and symmedian \overline{AD} , and the orthocenter picture with $\triangle ABC$ and diameter \overline{AD} . They are colored blue and red below, respectively.

Let M be the midpoint of \overline{KL} .

Claim (Blue part of the figure). Lines \overline{AM} and \overline{AD} are isogonal to $\angle A$, and $AM = AD \cdot \cos A$.

Proof. First part follows from \overline{AD} being the A-symmedian. It's also a standard fact that $AM \cdot AD = AK \cdot AL$ (e.g. by \sqrt{bc} inversion); so it suffices to prove $AM^2 = AK \cdot AL \cos A$. This follows by Stewart's theorem to get AM together with the law of cosines $\cos A = \frac{AK^2 + AL^2 - KL^2}{2 \cdot AK \cdot AL}$.

Let H denote the orthocenter.

Claim (Red part of the figure). Lines \overline{AH} and \overline{AO} are isogonal to $\angle A$, and $AH = AD \cdot \cos A$.

Proof. Both parts are well-known.

The two claims together imply H = M and we're done.