CEMC Euclid 2023/10C
 Evan Chen

Twitch Solves ISL

Episode 124

Problem

Define

$$
f(n)=\left\lfloor\frac{n}{1^{2}+1}\right\rfloor+\left\lfloor\frac{2 n}{2^{2}+1}\right\rfloor+\left\lfloor\frac{3 n}{3^{2}+1}\right\rfloor+\cdots
$$

for each positive integer n. Suppose m is odd and $f(m+1)-f(m)=2$. Show that m is prime.

Video

https://youtu.be/soMY1qyNiNI

External Link

https://aops.com/community/p27446040

Solution

Notice that for any positive integers n and k, we have

$$
\left\lfloor\frac{k n+k}{k^{2}+1}\right\rfloor-\left\lfloor\frac{k n}{k^{2}+1}\right\rfloor= \begin{cases}1 & n \equiv k, 2 k, \ldots, k^{2} \quad\left(\bmod k^{2}+1\right) \\ 0 & \text { otherwise } .\end{cases}
$$

Fix m and let a_{k} be the term above for brevity. This means that

$$
f(m+1)-f(m)=a_{1}+a_{2}+\ldots
$$

Claim. If $m>1$ is odd and composite, then $a_{1}+a_{2}+\ldots$ is at least 3 .
Proof. Notice that $a_{1}=1, a_{m}=1$, and if d is any proper divisor of m which is greater than or equal to \sqrt{m} (so that $d^{2}+1>m$), we have $a_{d}=1$ as well.

Finally, $f(2)-f(1)=1$. So if m is odd and $f(m+1)-f(m)=2$, it follows m is prime.

