EGMO 2023/6

Evan Chen

Twitch Solves ISL

Episode 123

Problem

Let $A B C$ be a triangle with circumcircle Ω. Let S_{b} and S_{c} respectively denote the midpoints of the arcs $A C$ and $A B$ that do not contain the third vertex. Let N_{a} denote the midpoint of $\operatorname{arc} B A C$ (the arc $B C$ including A). Let I be the incenter of $A B C$. Let ω_{b} be the circle that is tangent to $A B$ and internally tangent to Ω at S_{b}, and let ω_{c} be the circle that is tangent to $A C$ and internally tangent to Ω at S_{c}. Show that the line $I N_{a}$, and the lines through the intersections of ω_{b} and ω_{c}, meet on Ω.

Video

https://youtu.be/ZmG11r8tQNI

External Link

https://aops.com/community/p27522960

Solution

Let $Z=\overline{S_{b} S_{b}} \cap \overline{S_{c} S_{c}}, X=\overline{A B} \cap \overline{S_{B} S_{c}}$ (which lies on ω_{b} by shooting lemma), and $Y=\overline{A C} \cap \overline{S_{B} S_{c}}$ (which lies on ω_{c} similarly).

Claim. Point A lies on the radical axis of ω_{b} and ω_{c}.
Proof. It's well known $\overline{S_{b} S_{c}}$ is the perpendicular bisector of $\overline{A I}$, so we get $A X=A Y$ and hence $A X^{2}=A Y^{2}$.

Claim. Point Z lies on the radical axis of ω_{b} and ω_{c}.
Proof. It's the radical center of $\omega_{b}, \omega_{c}, \Omega$.
Claim. Quadrilateral $A S_{b} T S_{c}$ is harmonic.
Proof. $\left(A T ; S_{b} S_{c}\right) \stackrel{I}{=}\left(M N_{a} ; B C\right)=-1$.
The third claim implies A, T, Z are collinear, solving the problem.

