EGMO 2023/6 Evan Chen

TWITCH SOLVES ISL

Episode 123

Problem

Let ABC be a triangle with circumcircle Ω . Let S_b and S_c respectively denote the midpoints of the arcs AC and AB that do not contain the third vertex. Let N_a denote the midpoint of arc BAC (the arc BC including A). Let I be the incenter of ABC. Let ω_b be the circle that is tangent to AB and internally tangent to Ω at S_b , and let ω_c be the circle that is tangent to AC and internally tangent to Ω at S_c . Show that the line IN_a , and the lines through the intersections of ω_b and ω_c , meet on Ω .

Video

https://youtu.be/ZmG11r8tQNI

External Link

https://aops.com/community/p27522960

Solution

Let $Z = \overline{S_b S_b} \cap \overline{S_c S_c}$, $X = \overline{AB} \cap \overline{S_B S_c}$ (which lies on ω_b by shooting lemma), and $Y = \overline{AC} \cap \overline{S_B S_c}$ (which lies on ω_c similarly).

Claim. Point A lies on the radical axis of ω_b and ω_c .

Proof. It's well known $\overline{S_bS_c}$ is the perpendicular bisector of \overline{AI} , so we get AX = AY and hence $AX^2 = AY^2$.

Claim. Point Z lies on the radical axis of ω_b and ω_c .

Proof. It's the radical center of ω_b , ω_c , Ω .

Claim. Quadrilateral AS_bTS_c is harmonic.

Proof.
$$(AT; S_b S_c) \stackrel{I}{=} (MN_a; BC) = -1.$$

The third claim implies A, T, Z are collinear, solving the problem.