EGMO 2023/3

Evan Chen

Twitch Solves ISL

Episode 123

Problem

Let k be a fixed positive integer. Lexi has a dictionary \mathbb{D} consisting of some k-letter strings containing only the letters A and B. Lexi would like to write either the letter A or the letter B in each cell of a $k \times k$ grid so that each column contains a string from \mathbb{D} when read from top-to-bottom and each row contains a string from \mathbb{D} when read from left-to-right.

What is the smallest integer m such that if \mathbb{D} contains at least m different strings, then Lexi can fill her grid in this manner, no matter what strings are in \mathbb{D} ?

Video

https://youtu.be/PcPjYpkwY_g

External Link

https://aops.com/community/p27522967

Solution

Answer: $|\mathbb{D}| \geq 2^{k-1}$ is sufficient to fill the grid.
Counterexample where $|\mathbb{D}|=2^{k-1}-1$. Let \mathbb{D} be all the words that start with A other than the all- A string. There can't be any construction because the first row would contain a B, but no words in \mathbb{D} start with B.

Sufficiency proof when $|\mathbb{D}| \geq 2^{k-1}$. If \mathbb{D} contains either the all- A or all- B string, we're done.

Otherwise, pair the remaining $2^{k}-2$ possible strings into $2^{k-1}-1$ pairs where we pair two strings if they have no overlapping letters in the same position (i.e. they are opposites, like $A B B A A$ and $B A A B B)$. Because $|\mathbb{D}|>2^{k-1}-1$, it follows \mathbb{D} has a pair of such opposites in it.

Then it's possible to fill the grid with just those two words, e.g. $A B B A A$ gives the grid

$$
\left[\begin{array}{lllll}
A & B & B & A & A \\
B & A & A & B & B \\
B & A & A & B & B \\
A & B & B & A & A \\
A & B & B & A & A
\end{array}\right] .
$$

