China 2021/6
 Evan Chen
 Twitch Solves ISL
 Episode 123

Problem

Solve over positive integers the functional equation

$$
f(f(x)+y) \mid x+f(y) .
$$

Video

https://youtu.be/orvTuytr6uk

External Link

https://aops.com/community/p19116098

Solution

There are three families of solutions:

- f is the identity function;
- $f(n)=1$ for $n \geq 2$, where $f(1)$ is any positive integer.
- $f(n)=2$ for n even, $f(n)=1$ for odd $n \geq 3$, and $f(1)$ is any odd positive integer.

The verification is easy, so we prove these are the only solution. The proof is split into two main cases.

Case where f is not injective. Let

$$
T=\min _{f(a)=f(b), a<b}(b-a) .
$$

Then all outputs of f are eventually divisors of T, as

$$
f(y+f(a))=f(y+f(b))|\operatorname{gcd}(f(y)+a, f(y)+b)| b-a \quad \forall y>0 .
$$

Claim. We have $T \leq 2$.
Proof. If $T>2$, then look any T consecutive outputs. They were supposed to be distinct divisors of T, impossible for $T>2$.

If $T=1$, then for any $n \geq 2$, let $y=n-1$ and let x be a large integer. Then we have $f(n) \mid x+f(n-1)$ for all large x, forcing $f(n)+1$.

If $T=2$, then it follows f must alternate between 1 and 2 eventually. Again, $f(n) \leq 2$ follows for $n \geq 2$ as in the previous case, by letting $y=n-1$ and x be large with $f(x)=1$. We can then quickly verify that only the situation where $f($ even $)=$ even bears solutions, the ones we claimed earlier.

Case where f is not injective. Let $c=f(1)$. Taking $x=1$ then gives

$$
f(y+c) \leq f(y)+1 .
$$

This implies

$$
f(n) \leq \frac{1}{c} n+\max \{f(1), \ldots, f(c)\}
$$

For f to be injective, we must then have $c=1$. Finally, $f(y+1) \leq f(y)+1$ together with f injective then forces f to be the identity function, by induction.

