Marcin E Kuczma
 Evan Chen

Twitch Solves ISL

Episode 122

Problem

Find all functions f taking integer-lattice vectors in \mathbb{Z}^{2} to \mathbb{R} such that $f(\mathbf{a}+\mathbf{b})=$ $f(\mathbf{a})+f(\mathbf{b})$ whenever $\mathbf{a} \perp \mathbf{b}$.

Video

https://youtu.be/2mn3De0yc8A

External Link

https://aops.com/community/p27461531

Solution

Abbreviate $f(\langle x, y\rangle)$ to just $f(x, y)$. Note that the set of solutions is obviously an \mathbb{R}-vector space. Consider the four solutions:

$$
\begin{aligned}
f_{1}(x, y) & :=x \\
f_{2}(x, y) & :=y \\
f_{3}(x, y) & :=x^{2}+y^{2} \\
f_{4}(x, y) & :=(x \% 2)-(y \% 2)
\end{aligned}
$$

(Verification left as exercise.) They are linearly independent, so any linear combination of this works, and we have found a 4-dimensional space of solutions.

We now show conversely that the dimension of the vector space of solutions is at most 4. To begin, first note that

$$
f(x, y)=f(x, 0)+f(0, y)
$$

In particular, $f(0,0)=0$. Next, note that for all $n \geq 1$

$$
\begin{aligned}
f(n, 0)+f(0,-1)+f(1,0)+f(0, n) & =f(n,-1)+f(1, n) \\
& =f(n+1, n-1) \\
& =f(n+1,0)+f(0, n-1) \\
\Longrightarrow f(n+1,0) & =f(n, 0)+f(0,-1)+f(1,0)+f(0, n)-f(0, n-1)
\end{aligned}
$$

By writing the analogous equations for $f(-(n+1), 0), f(0, n+1)$ and $f(0,-(n+1))$, it follows that all the values of f are determined by these recursions as soon as the "initial" values of $f(1,0), f(-1,0), f(0,1), f(0,-1)$ are chosen. Ergo, the space of valid f is at most four-dimensional, as needed.

