China 2005/2

Evan Chen

Twitch Solves ISL

Episode 122

Problem

Over all $a, b, c, x, y, z>0$ such that $b z+c y=a, a z+c x=b, a y+b x=c$, find the smallest possible value of

$$
\frac{x^{2}}{1+x}+\frac{y^{2}}{1+y}+\frac{z^{2}}{1+z} .
$$

Video

https://youtu.be/kFaKtqOXGk0

External Link

https://aops.com/community/p3592156

Solution

The answer is $1 / 2$, achieved at $a=b=c$ and $x=y=z=1 / 2$.
To prove the inequality, note that if we solve for x, y, z in terms of a, b, c we get

$$
\begin{aligned}
& x=\frac{-a^{2}+b^{2}+c^{2}}{2 b c} \\
& y=\frac{a^{2}-b^{2}+c^{2}}{2 a c} \\
& z=\frac{a^{2}+b^{2}-c^{2}}{2 a b} .
\end{aligned}
$$

If $x, y, z>0$, then it follows that a, b, c are the sides of an acute triangle. Then, by the law of cosines, we actually have

$$
x=\cos A, \quad y=\cos B, \quad z=\cos C .
$$

TODO: to be finished. (The solution from the stream is NOT correct.)

