# RMM 2008/4 

## Evan Chen

## Twitch Solves ISL

Episode 121

## Problem

Consider a square of sidelength $n$ and $(n+1)^{2}$ interior points. Prove that we can choose 3 of these points so that they determine a triangle (possibly degenerate) of area at most $\frac{1}{2}$.

## Video

https://youtu.be/79W3dNyiYWw

## External Link

https://aops.com/community/p1030132

## Solution

Assume no 3 points are collinear (else they are area 0 ). Suppose the convex hull of our polygon has $k \geq 3$ points. We consider two cases.

First case: $k \leq 4 n$. If $k \leq 4 n$, we use the following algorithm: draw the entire convex hull, and then repeatedly draw non-intersecting segments between pairs of points. The end result is a division of the $k$-gon into triangles.

By double-counting interior angles, the number of triangles is given exactly by

$$
\frac{360^{\circ} \cdot\left((n+1)^{2}-k\right)+180^{\circ} \cdot(k-2)}{180^{\circ}}=2 n^{2}+4 n-k \geq 2 n^{2} .
$$

The sum of the areas of the triangles is at most $n^{2}$ (the total area of the square), so we're done.

Second case: $k \geq 4 n$. We will show that we can take some three consecutive vertices of the convex hull.

Let $a_{1}, \ldots, a_{k}$ be the side lengths of the convex hull in order. A convex polygon contained inside a square of side length $n$ has perimeter at most $4 n$, so we have $a_{1}+\cdots+$ $a_{k} \leq 4 n$. Using the lemma with $k \geq 4 n$, there should be an index $i$ with $a_{i}+a_{i+1} \leq 2$. It follows that $a_{i} a_{i+1} \leq 1$ for some index $i$ by AM-GM. The two associated sides then carve out a triangle of area at most $\frac{1}{2}$.

