Longlist 1974/2 Evan Chen

TWITCH SOLVES ISL

Episode 121

Problem

Let u_n be the Fibonacci sequence, i.e., $u_0 = 0$, $u_1 = 1$, $u_n = u_{n-1} + u_{n-2}$ for n > 1. Prove that there exist infinitely many prime numbers p that divide u_{p-1} .

Video

https://youtu.be/QS7jBXIVf8s

External Link

https://aops.com/community/p2136111

Solution

Let $\alpha = \frac{1}{2}(1+\sqrt{5})$ and $\beta = \frac{1}{2}(1-\sqrt{5})$. We have Binet's formula:

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}.$$

In fact, if $p \equiv 1 \pmod{5}$, then by quadratic reciprocity, 5 is a quadratic residue, so α and β can be viewed as elements of \mathbb{F}_p , and Fermat's theorem applies to give $\alpha^{p-1} \equiv \beta^{p-1} \equiv 1 \pmod{p}$, as desired.

Remark. In fact, if $p \equiv \pm 2 \pmod{5}$ and p > 2 then $\alpha^p = \beta$ and $\beta^p = \alpha$, so in this case

$$u_{p-1} \equiv \frac{\frac{\beta}{\alpha} - \frac{\alpha}{\beta}}{\alpha - \beta} = -\frac{\alpha + \beta}{\alpha\beta} = -\frac{-1}{1} = 1 \pmod{p}.$$