Longlist 1974/2

Evan Chen

Twitch Solves ISL

Episode 121

Problem

Let u_{n} be the Fibonacci sequence, i.e., $u_{0}=0, u_{1}=1, u_{n}=u_{n-1}+u_{n-2}$ for $n>1$. Prove that there exist infinitely many prime numbers p that divide u_{p-1}.

Video

https://youtu.be/QS7jBXIVf8s

External Link

https://aops.com/community/p2136111

Solution

Let $\alpha=\frac{1}{2}(1+\sqrt{5})$ and $\beta=\frac{1}{2}(1-\sqrt{5})$. We have Binet's formula:

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

In fact, if $p \equiv 1(\bmod 5)$, then by quadratic reciprocity, 5 is a quadratic residue, so α and β can be viewed as elements of \mathbb{F}_{p}, and Fermat's theorem applies to give $\alpha^{p-1} \equiv \beta^{p-1} \equiv 1$ $(\bmod p)$, as desired.

Remark. In fact, if $p \equiv \pm 2(\bmod 5)$ and $p>2$ then $\alpha^{p}=\beta$ and $\beta^{p}=\alpha$, so in this case

$$
u_{p-1} \equiv \frac{\frac{\beta}{\alpha}-\frac{\alpha}{\beta}}{\alpha-\beta}=-\frac{\alpha+\beta}{\alpha \beta}=-\frac{-1}{1}=1 \quad(\bmod p)
$$

