BAMO 2019/3
 Evan Chen

Twitch Solves ISL

Episode 121

Problem

In $\triangle A B C$, mark points A^{\prime}, B^{\prime}, and C^{\prime} on segments $\overline{B C}, \overline{C A}$, and $\overline{A B}$ respectively, so that $\overline{A A^{\prime}}$ is an altitude, $\overline{B B^{\prime}}$ is a median, and $\overline{C C^{\prime}}$ is an angle bisector. Prove that if $\triangle A^{\prime} B^{\prime} C^{\prime}$ is equilateral if and only if $\triangle A B C$ is equilateral.

Video

https://youtu.be/4VQxYmE2tEQ

External Link

https://aops.com/community/p13025889

Solution

If $\triangle A B C$ is equilateral, it's obvious because $A^{\prime}, B^{\prime}, C^{\prime}$ are the midpoints.
Conversely, consider any triangle. Note that A^{\prime} unconditionally lies on the circle with diameter $\overline{A C}$ centered at B^{\prime}, meaning $A^{\prime} B^{\prime}=B^{\prime} A=B^{\prime} C$.

So if $\triangle A^{\prime} B^{\prime} C^{\prime}$ was equilateral, then $C^{\prime} B^{\prime}=B^{\prime} A^{\prime}$, then C^{\prime} would lie on this circle as well. This means $\angle A C^{\prime} C=90^{\circ}$. As C^{\prime} was the foot of the bisector, it follows $A C=B C$.

To finish, note that

$$
60^{\circ}=\angle C^{\prime} B^{\prime} A^{\prime}=2 \angle C^{\prime} C A^{\prime}=\angle A C B .
$$

