bissue 2022/15

Evan Chen

Twitch Solves ISL

Episode 120

Problem

Quadrilateral $A B C D$ is such that $2 \angle A=\angle B$ and $2 \angle D=\angle C$. If $A B=3, B C=4$, and $C D=5$, find the area of quadrilateral $A B C D$.

Video

https://youtu.be/PBSOcmLosrw

External Link

https://aops.com/community/p24130067

Solution

This problem and solution were contributed by Benny Wang.
Let E be the intersection of the angle bisector of $\angle A B C$ with $\overline{A D}$; let F be the intersection of the angle bisector of $\angle B C D$ with $\overline{A D}$.

Claim. We have $E=F$.
Proof. Let the perpendiculars from E to $\overline{A B}$ and $\overline{B C}$ be E_{1} and E_{2}. Note that due to $\triangle A B E$ isosceles with $A E=B E$ (using the angle condition), it follows that $E_{1} B=\frac{A B}{2}=$ 1.5. Then, since we defined $\overline{B E}$ as the bisector of $\angle A B C$, we have that $E_{2} B=E_{1} B=1.5$.

Similarly, if we define F_{1} and F_{2} as the perpendiculars from F to $\overline{C D}$ and $\overline{B C}$, we have that $F_{2} C=F_{1} C=\frac{C D}{2}=2.5$. Note that $B E_{2}+F_{2} C=4=B C$, implying that $E_{2}=F_{2}$, implying that $E=F$, as desired.

Now we compute a bunch. Let G be the point $E_{2}=F_{2}$, and let X be the point $E=F$. Consider $\triangle B X C$. Then G is defined as the foot of the altitude from X to $\overline{B C}$; we know $B G=1.5$ and $G C=2.5$. We also know that $\angle B X C=60^{\circ}$ by some straightforward angle chasing. This is enough information to solve for $\overline{B X C}$; in particular, we desire the length of $X G$; then, since X is equidistant from $\overline{A B}, \overline{B C}$ and $\overline{C D}$, we could compute the area of $A B C D$ to be $\frac{(A B+B C+C D) \times X G}{2}$.

To find $X G$ is a straightforward geometry problem now. There are several ways we could go about this. Here is one: let M be the midpoint of $\overline{B C}$, and let O be the circumcenter of $\triangle B X C$.

Note that $\angle B O C=2 \angle B X C=120^{\circ}$, so $\triangle B M O$ and $\triangle C M O$ are 30-60-90 triangles. Therefore, $M O=\frac{2}{\sqrt{3}}$ and $B O=O C=O X=\frac{4}{\sqrt{3}}$. Now, note that

$$
\begin{aligned}
G X & =\sqrt{X O^{2}-G M^{2}}+M O \\
& =\sqrt{\left(\frac{4}{\sqrt{3}}\right)^{2}-0.5^{2}}+\frac{2}{\sqrt{3}} \\
& =\sqrt{\frac{61}{12}}+\frac{4}{\sqrt{12}} \\
& =\frac{4+\sqrt{61}}{\sqrt{12}} .
\end{aligned}
$$

Therefore,

$$
[A B C D]=\frac{X G \cdot(A B+B C+C D)}{2}=\frac{4+\sqrt{61}}{2 \sqrt{12}} \cdot 12=4 \sqrt{3}+\sqrt{183} .
$$

