bissue 2022/15 Evan Chen

TWITCH SOLVES ISL

Episode 120

Problem

Quadrilateral ABCD is such that $2 \angle A = \angle B$ and $2 \angle D = \angle C$. If AB = 3, BC = 4, and CD = 5, find the area of quadrilateral ABCD.

Video

https://youtu.be/PBSOcmLosrw

External Link

https://aops.com/community/p24130067

Solution

This problem and solution were contributed by Benny Wang.

Let E be the intersection of the angle bisector of $\angle ABC$ with \overline{AD} ; let F be the intersection of the angle bisector of $\angle BCD$ with \overline{AD} .

Claim. We have E = F.

Proof. Let the perpendiculars from E to \overline{AB} and \overline{BC} be E_1 and E_2 . Note that due to $\triangle ABE$ isosceles with AE = BE (using the angle condition), it follows that $E_1B = \frac{AB}{2} = 1.5$. Then, since we defined \overline{BE} as the bisector of $\angle ABC$, we have that $E_2B = E_1B = 1.5$.

Similarly, if we define F_1 and F_2 as the perpendiculars from F to \overline{CD} and \overline{BC} , we have that $F_2C = F_1C = \frac{CD}{2} = 2.5$. Note that $BE_2 + F_2C = 4 = BC$, implying that $E_2 = F_2$, implying that E = F, as desired.

Now we compute a bunch. Let G be the point $E_2 = F_2$, and let X be the point E = F. Consider $\triangle BXC$. Then G is defined as the foot of the altitude from X to \overline{BC} ; we know BG = 1.5 and GC = 2.5. We also know that $\angle BXC = 60^{\circ}$ by some straightforward angle chasing. This is enough information to solve for \overline{BXC} ; in particular, we desire the length of XG; then, since X is equidistant from \overline{AB} , \overline{BC} and \overline{CD} , we could compute the area of ABCD to be $\frac{(AB+BC+CD)\times XG}{2}$.

To find XG is a straightforward geometry problem now. There are several ways we could go about this. Here is one: let M be the midpoint of \overline{BC} , and let O be the circumcenter of $\triangle BXC$.

Note that $\angle BOC = 2 \angle BXC = 120^{\circ}$, so $\triangle BMO$ and $\triangle CMO$ are 30-60-90 triangles. Therefore, $MO = \frac{2}{\sqrt{3}}$ and $BO = OC = OX = \frac{4}{\sqrt{3}}$. Now, note that

$$GX = \sqrt{XO^2 - GM^2} + MO$$

= $\sqrt{\left(\frac{4}{\sqrt{3}}\right)^2 - 0.5^2} + \frac{2}{\sqrt{3}}$
= $\sqrt{\frac{61}{12}} + \frac{4}{\sqrt{12}}$
= $\frac{4 + \sqrt{61}}{\sqrt{12}}$.

Therefore,

$$[ABCD] = \frac{XG \cdot (AB + BC + CD)}{2} = \frac{4 + \sqrt{61}}{2\sqrt{12}} \cdot 12 = \boxed{4\sqrt{3} + \sqrt{183}}.$$