bissue 2022/13

Evan Chen

Twitch Solves ISL

Episode 119

Problem

The graph of $y=f(x)$ for some cubic polynomial $f \in \mathbb{R}[x]$ meets the x-axis at points A, B, and $(20,0)$. A line ℓ of slope $\frac{1}{13}$ meets the cubic at points P, Q, and $(23, u)$. Given that A, B, P, and Q are distinct and concyclic, find u.

Video

https://youtu.be/8ij1wFg-SjU

External Link

https://aops.com/community/p26889787

Solution

Set $A=(a, 0), B=(b, 0), P=(p, f(p)), Q=(q, f(q))$. Let line $A B$ meet the x-axis at $T=(t, 0)$. Finally, let $f(x)=k(x-a)(x-b)(x-20)$ for $k \in \mathbb{R}$.

By power of a point, we have

$$
\frac{\sqrt{170}}{13}(t-p) \cdot \frac{\sqrt{170}}{13}(t-q)=T P \cdot T Q=T A \cdot T B=(t-a)(t-b)
$$

Meanwhile, the equation of $\overline{T P Q} \cap \operatorname{Graph}(f)$ is given by

$$
k(x-a)(x-b)(x-20)-\frac{x-t}{13} \equiv k(x-23)(x-p)(x-q)
$$

since the right-hand side is a cubic polynomial with roots at $23, p, q$. Plugging in $x=t$ to this now gives

$$
\begin{aligned}
k(t-a)(t-b)(t-20) & =k(t-23)(t-p)(t-q) \\
\Longrightarrow \frac{170}{169}(t-20) & =(t-23) \\
\Longrightarrow t & =-487
\end{aligned}
$$

Finally, $u=\frac{23-t}{13}=\frac{510}{13}$.

