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Problem
Is it possible to put 1987 points in the Euclidean plane such that the distance between
each pair of points is irrational and each three points determine a non-degenerate triangle
with rational area?

Video
https://youtu.be/MQizW3_nrZE

External Link
https://aops.com/community/p366548
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Solution
Note that any triangle with vertices which are lattice points has rational area. So we’d
be done if we could prove:

Claim. Given a finite set S of lattice points, we can add one lattice point P such that
P is irrational distance from every point in S.

Proof. Suppose S lies inside [1, n]× [1, n]. Let a2 + b2 = c2 by a primitive Pythagorean
triple with the additional property that a/b 6= x/y for any (x, y) ∈ S; this is possible
there are infinitely many primitive Pythagorean triples.

Consider large R; I claim that P = (aR, bR) is okay if R is sufficiently large. The
squared distance from P to a point (u, v) is

D = (aR− u)2 + (bR− v)2 = (cR)2 − 2(au+ bv)R+ (u2 + v2)

So for this to be square, it must be inside the set

D ∈ {(5R− (a+ b)n)2, (5R− (a+ b)n+ 1)2, . . . , (5R+ 2n)2}.

In other words, if R is large enough, then D is not a square unless D is actually identically
the square of a polynomial in R. For that to be the case, we would need

D =
(
cR−

√
u2 + v2

)2

which would only happen if

c
√
u2 + v2 = au+ bv =⇒ 0 = c2(u2 + v2)− (au+ bv)2 = (bu− av)2

which doesn’t happen because we assured a/b 6= u/v.
Hence for each (u, v) ∈ S, there exists a constant Cu,v for which R > Cu,v guarantees

P is irrational distance from (u, v). Take the max of these finitely many constants to
finish.
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