IMO 1997/3

Evan Chen

Twitch Solves ISL
Episode 116

Problem

Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions:

$$
\begin{aligned}
\left|x_{1}+x_{2}+\cdots+x_{n}\right| & =1 \\
\left|x_{i}\right| & \leq \frac{n+1}{2} \quad \text { for } i=1,2, \ldots, n
\end{aligned}
$$

Show that there exists a permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2}
$$

Video

https://youtu.be/zY4Uxk7i2Gg

External Link

https://aops.com/community/p356706

Solution

WLOG $\sum x_{i}=1$ (by negating x_{i}) and $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Notice that

- The largest possible value of the sum in question is

$$
A=x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n} .
$$

while the smallest value is

$$
B=n x_{1}+(n-1) x_{2}+\cdots+x_{n} .
$$

- Meanwhile, the average value across all permutations is

$$
1 \cdot \frac{n+1}{2}+2 \cdot \frac{n+1}{2}+\cdots+n \cdot \frac{n+1}{2}=\frac{n+1}{2} .
$$

Now imagine we transform the sum A to the sum B, one step at a time, by swapping adjacent elements. Every time we do a swap of two neighboring $u<v$, the sum decreases by

$$
(i u+(i+1) v)-(i v+(i+1) u)=v-u<n+1 .
$$

We want to prove we land in the interval

$$
I=\left[-\frac{n+1}{2}, \frac{n+1}{2}\right]
$$

at some point during this transformation. But since $B \leq \frac{n+1}{2} \leq A$ (since $\frac{n+1}{2}$ was the average) and our step sizes were at most the length of the interval I, this is clear.

