Florida 2023

Evan Chen

Twitch Solves ISL

Episode 113

Problem

Find all pairs of positive integers (n, d) such that the following statement holds: if x is a positive integer for which 2^{x+n} and 5^{x} have the same first decimal digit, that digit is equal to d. (In particular, $d \leq 9$.)

Video

https://youtu.be/02-1qI9SEHg

Solution

Answer: $(2,6),(4,1)$, and $(6,2)$.
First, note that

$$
2^{x+n} \cdot 5^{x}=2^{n} \cdot 10^{x} .
$$

To show these work, we start with the wonderful table that shows what happens when one multiplies two numbers with the same starting digit:

- $\overline{01 \ldots} \leq \overline{1 \ldots} \cdot \overline{1 \ldots}<\overline{04 \ldots}$
- $\overline{04 \ldots} \leq \overline{2 \ldots} \cdot \overline{2 \ldots}<\overline{09 \ldots}$
- $\overline{09 \ldots} \leq \overline{3 \ldots} \cdot \overline{3 \ldots}<\overline{16 \ldots}$
- $\overline{16 \ldots} \leq \overline{4 \ldots} \cdot \overline{4 \ldots}<\overline{25 \ldots}$
- $\overline{25 \ldots} \leq \overline{5 \ldots} \cdot \overline{5 \ldots}<\overline{36 \ldots}$
- $\overline{36 \ldots} \leq \overline{6 \ldots} \cdot \overline{6 \ldots}<\overline{49 \ldots}$
- $\overline{49 \ldots} \leq \overline{7 \ldots} \cdot \overline{7 \ldots}<\overline{64 \ldots}$
- $\overline{64 \ldots} \leq \overline{8 \ldots} \cdot \overline{8 \ldots}<\overline{81 \ldots}$
- $\overline{81 \ldots} \leq \overline{9 \ldots} \cdot \overline{9 \ldots}<\overline{100 \ldots}$

Hence, if two numbers with the same leading digit have product $4 \cdot 10^{x}$, for example, that leading digit is 2 or 6 . Moreover, the former case only occurs if the two numbers are both exactly of the form $200 \ldots 00$. So in the situation of the problem, if $2^{x+2} \cdot 5^{x}=4 \cdot 10^{x}$ and 2^{x+2} and 5^{x} have the same leading digit, that leading digit must be exactly 6 . This shows that $(2,6)$ is a working pair. The pairs $(4,1)$ and $(6,2)$ have exactly the same proof.

The converse is painful. It relies on the following lemma:
Lemma (Not JMO 2016/2). For any finite string of decimal digits, some power of 5 begins with that string of digits.

Proof. The idea is to note that $\log _{10} 5$ is irrational, and hence for any nontrivial interval $I \subseteq[0,1]$ there exists an integer k such that the fractional part of $k \log _{10} 5=\log _{10}\left(5^{k}\right)$ lies in I. (This is sometimes called Kronecker approximation theorem.)

Now do some work: if 2^{n} is not a one- or two-digit perfect square, there are two entries in the table earlier for which the first two digits line up with the first two digits of $2^{n}=\overline{d_{1} d_{2} \ldots}$. Then use Kronecker approximation to rig 5^{x} such that it starts with some integer s for which $s \approx \sqrt{d_{1} d_{2} \cdot d_{3} d_{4} d_{5} \ldots}$, and then again with $s \approx \sqrt{d_{1} \cdot d_{2} d_{3} d_{4} \ldots}$. (This is admittedly sketchy.)

