# CodeForces 1667C Evan Chen

TWITCH SOLVES ISL

Episode 113

### Problem

Let n be a positive integer. We wish to place m half-queens on an  $n \times n$  chessboard; these can attack horizontally, vertically, or along the down-right/up-left diagonal (i.e. in six directions), and they attack the cells they occupy. Determine the smallest m needed so that there exists some placement in which every cell in the board is attacked by at least one half-queen.

### Video

https://youtu.be/UEspJ8Xkmpo

## **External Link**

https://codeforces.com/problemset/problem/1667/C/

#### Solution

Answer:  $\left\lceil \frac{2n-1}{3} \right\rceil$ .

For the bound, color green any cell that is not in the same row or column as one of our m half-queens. That means we have (at least) an  $(n - m) \times (n - m)$  array of green cells, and each green cell must be in a diagonal of a half-queen. In this array, observe that the leftmost column and topmost row of green cells cannot ever lie in the same diagonal (marked X below).

|   |   |   | Ŵ |   | Ŵ |   |
|---|---|---|---|---|---|---|
|   | Ŵ |   |   | x |   | х |
| Ŵ |   |   |   |   |   |   |
|   |   |   |   |   | Ŵ |   |
|   |   | Ŵ |   | х |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   | x |   |   |

If the queens did cover all green cells, 2(n-m) - 1 half-queens. In other words,

$$m \ge 2(n-m)-1 \implies m \ge \frac{2n-1}{3}$$

which implies the bound.

For the construction, consider first  $n \equiv 2 \pmod{3}$ . We give a construction for n = 17 that generalizes ready.



When  $n \equiv 1 \pmod{3}$ , use the construction for  $(n+1) \times (n+1)$  and delete the rightmost row and bottom column. When  $n \equiv 0 \pmod{3}$ , add a row and column at the top and left, and place a new queen in the upper-left hand corner.