# ELMO Revenge 2022/1 Evan Chen

TWITCH SOLVES ISL

Episode 112

#### Problem

Let ABC and DBC be triangles with incircles touching at a point P on BC. Points A, D lie on the same side of BC and DB < AB < DC < AC. The bisector of  $\angle BDC$  meets line AP at X, and the altitude from A meets DP at Y. Point Z lies on line XY so  $ZP \perp BC$ . Show the reflection of A over BC is on line ZD.

#### Video

https://youtu.be/QVD4kFNyCHQ

### **External Link**

https://aops.com/community/c6h2881590p25619349

## Solution

**Intended solution.** Let A' be the reflection of A over BC. Then the points A, D, P, A' lie on a hyperbola with foci at B and C by construction. Then apply Pascal to DDPPAA'.

**Synthetic solution.** Let *E* be the reflection of *A* across  $\overline{BC}$ . Let *I* and *J* denote the incenters of  $\triangle EBC$  and  $\triangle DBC$ . Redefine  $Z = \overline{DE} \cap \overline{IPJ}$ ; then the problem is to show *X*, *Y*, *Z* are collinear.



To interpret the condition about P:

**Claim.** (IJ; PZ) = -1.

*Proof.* Because the condition on P forces BD + CE = BE + CD, there is an incircle for BDCE. Hence by Monge theorem, Z coincides with the exsimilicenter of (I) and (J). As I is the insimilicenter, the conclusion follows.

Next, let  $W = \overline{ZDE} \cap \overline{AP}$ .

**Claim.** Triangles DJP and AWE are perspective, i.e. the lines  $\overline{DA}$ ,  $\overline{JW}$ ,  $\overline{PE}$  are concurrent.

*Proof.* We have  $-1 = (ZP; JI) \stackrel{W}{=} (E, A; \overline{JW} \cap \overline{AE}, Y)$ . Then it follows by looking at complete quadrilateral ADPEWY.

Now by Desargue's theorem, it follows  $\overline{DJ} \cap \overline{AW} = X$ ,  $\overline{DP} \cap \overline{AE} = Y$ ,  $\overline{JP} \cap \overline{WE} = Z$  are collinear.