ELMO Revenge 2022/1
 Evan Chen

Twitch Solves ISL

Episode 112

Problem

Let $A B C$ and $D B C$ be triangles with incircles touching at a point P on $B C$. Points A, D lie on the same side of $B C$ and $D B<A B<D C<A C$. The bisector of $\angle B D C$ meets line $A P$ at X, and the altitude from A meets $D P$ at Y. Point Z lies on line $X Y$ so $Z P \perp B C$. Show the reflection of A over $B C$ is on line $Z D$.

Video

https://youtu.be/QVD4kFNyCHQ

External Link

https://aops.com/community/c6h2881590p25619349

Solution

Intended solution. Let A^{\prime} be the reflection of A over $B C$. Then the points A, D, P, A^{\prime} lie on a hyperbola with foci at B and C by construction. Then apply Pascal to $D D P P A A^{\prime}$.

Synthetic solution. Let E be the reflection of A across $\overline{B C}$. Let I and J denote the incenters of $\triangle E B C$ and $\triangle D B C$. Redefine $Z=\overline{D E} \cap \overline{I P J}$; then the problem is to show X, Y, Z are collinear.

To interpret the condition about P :
Claim. $(I J ; P Z)=-1$.

Proof. Because the condition on P forces $B D+C E=B E+C D$, there is an incircle for $B D C E$. Hence by Monge theorem, Z coincides with the exsimilicenter of (I) and (J). As I is the insimilicenter, the conclusion follows.

$$
\text { Next, let } W=\overline{Z D E} \cap \overline{A P} \text {. }
$$

Claim. Triangles $D J P$ and $A W E$ are perspective, i.e. the lines $\overline{D A}, \overline{J W}, \overline{P E}$ are concurrent.

Proof. We have $-1=(Z P ; J I) \stackrel{W}{=}(E, A ; \overline{J W} \cap \overline{A E}, Y)$. Then it follows by looking at complete quadrilateral $A D P E W Y$.

Now by Desargue's theorem, it follows $\overline{D J} \cap \overline{A W}=X, \overline{D P} \cap \overline{A E}=Y, \overline{J P} \cap \overline{W E}=Z$ are collinear.

