USAMTS 4/2/34

Evan Chen

TWITCH SOLVES ISL

Episode 111

Problem

Fix an integer $k \geq 2$. Find the smallest positive integer c_k such that a toroidal $k \times k$ board can be colored with one of c_k colors, where orthogonal and diagonal neighbors of a point are different colors.

Video

https://youtu.be/uUJ9BlrjJHg

External Link

https://aops.com/community/p26618826

Solution

The answer is

$$c_k = \begin{cases} 9 & \text{if } k = 3\\ 4 & \text{if } k \text{ is even}\\ 5 & \text{if } k \ge 5 \text{ is odd.} \end{cases}$$

When k=3, nine colors are both necessary and sufficient because the graph we are trying to color is K_9 (every two cells are the same color).

When k is even, a coloring using $(x \mod 2, y \mod 2)$ works. It's also best possible because every cell of each 2×2 must be a different color.

The main interesting is $k \geq 5$ odd.

Claim. At least five colors are necessary when k is odd.

Proof. In fact one cannot even color a $2 \times k$ toroidal grid with four colors, since if the first column is say red/pink and the second column is blue/purple then the columns will alternate red/pink and blue/purple.

On the other hand, a construction for k = 13 that generalizes easily is shown below.

R	G	Y	K	В	R	G	R	G	R	G	R	G
Y	K	B	R	G	Y	K	Y	K	Y	K	Y	K
B	R	G	Y	K	B	R	B	R	B	R	B	R
G	Y	K	B	R	G	Y	G	Y	G	Y	G	Y
K	B	R	G	Y	K	В	K	В	K	В	K	В
R	G	Y	K	В	R	G	R	G	R	G	R	G
Y	K	В	R	G	Y	В	Y	B	Y	В	Y	B
R	G	Y	K	B	R	G	R	G	R	G	R	G
Y	K	В	R	G	Y	В	Y	B	Y	В	Y	B
R	G	Y	K	B	R	G	R	G	R	G	R	G
Y	K	В	R	G	Y	В	Y	В	Y	В	Y	B
R	G	Y	K	В	R	G	R	G	R	G	R	G
Y	K	B	R	G	Y	B	Y	В	Y	В	Y	B