USAMTS 4/2/34

Evan Chen

Twitch Solves ISL

Episode 111

Problem

Fix an integer $k \geq 2$. Find the smallest positive integer c_{k} such that a toroidal $k \times k$ board can be colored with one of c_{k} colors, where orthogonal and diagonal neighbors of a point are different colors.

Video

https://youtu.be/uUJ9BlrjJHg

External Link

https://aops.com/community/p26618826

Solution

The answer is

$$
c_{k}= \begin{cases}9 & \text { if } k=3 \\ 4 & \text { if } k \text { is even } \\ 5 & \text { if } k \geq 5 \text { is odd }\end{cases}
$$

When $k=3$, nine colors are both necessary and sufficient because the graph we are trying to color is K_{9} (every two cells are the same color).

When k is even, a coloring using $(x \bmod 2, y \bmod 2)$ works. It's also best possible because every cell of each 2×2 must be a different color.

The main interesting is $k \geq 5$ odd.
Claim. At least five colors are necessary when k is odd.
Proof. In fact one cannot even color a $2 \times k$ toroidal grid with four colors, since if the first column is say red/pink and the second column is blue/purple then the columns will alternate red/pink and blue/purple.

On the other hand, a construction for $k=13$ that generalizes easily is shown below.

R	G	Y	K	B	R	G	R	G	R	G	R
G											
Y	K	B	R	G	Y	K	Y	K	Y	K	Y
K	R	G	Y	K	B	R	B	R	B	R	B
R											
G	Y	K	B	R	G	Y	G	Y	G	Y	G
Y											
K	B	R	G	Y	K	B	K	B	K	B	K
B											
R	G	Y	K	B	R	G	R	G	R	G	R
G											
Y	K	B	R	G	Y	B	Y	B	Y	B	Y
B											
R	G	Y	K	B	R	G	R	G	R	G	R
G											
Y	K	B	R	G	Y	B	Y	B	Y	B	Y
B											
R	G	Y	K	B	R	G	R	G	R	G	R
G											
Y	K	B	R	G	Y	B	Y	B	Y	B	Y
B											
R	G	Y	K	B	R	G	R	G	R	G	R
G											
Y	K	B	R	G	Y	B	Y	B	Y	B	Y
B											

