CodeForces 1698F Evan Chen

TWITCH SOLVES ISL

Episode 110

Problem

There is a sequence $a = (a_1, \ldots, a_n)$ of n real numbers. You may perform the following operation on it: choose two integers $1 \leq \ell \leq r \leq n$ where $a_l = a_r$, and reverse the subsequence from the ℓ^{th} to the r^{th} element, i.e. change $(a_\ell, a_{\ell+1}, \ldots, a_{r-1}, a_r)$ to $(a_r, a_{r-1}, \ldots, a_{l+1}, a_\ell)$.

Given another sequence $b = (b_1, \ldots, b_n)$, determine in $O(n \log n)$ time whether there exists a finite sequence of moves changing a into b.

Video

https://youtu.be/h3CEfCfK924

External Link

https://codeforces.com/problemset/problem/1698/F

Solution

We give two invariants:

- The leftmost and rightmost elements obviously never change.
- Construct an undirected graph G on the set of real numbers by creating one edge $\{a_i, a_{i+1}\}$ for each i = 1, ..., n-1, self-loops and multiple edges allowed (hence exactly n-1 edges). Then G never changes.

Claim. If these invariants are the same between a and b, then it's possible to take a to b.

Proof. To be written.