CodeForces 1698F

Evan Chen

Twitch Solves ISL

Episode 110

Problem

There is a sequence $a=\left(a_{1}, \ldots, a_{n}\right)$ of n real numbers. You may perform the following operation on it: choose two integers $1 \leq \ell \leq r \leq n$ where $a_{l}=a_{r}$, and reverse the subsequence from the $\ell^{\text {th }}$ to the $r^{\text {th }}$ element, i.e. change $\left(a_{\ell}, a_{\ell+1}, \ldots, a_{r-1}, a_{r}\right)$ to $\left(a_{r}, a_{r-1}, \ldots, a_{l+1}, a_{\ell}\right)$.

Given another sequence $b=\left(b_{1}, \ldots, b_{n}\right)$, determine in $O(n \log n)$ time whether there exists a finite sequence of moves changing a into b.

Video

https://youtu.be/h3CEfCfK924

External Link

[^0]
Solution

We give two invariants:

- The leftmost and rightmost elements obviously never change.
- Construct an undirected graph G on the set of real numbers by creating one edge $\left\{a_{i}, a_{i+1}\right\}$ for each $i=1, \ldots, n-1$, self-loops and multiple edges allowed (hence exactly $n-1$ edges). Then G never changes.

Claim. If these invariants are the same between a and b, then it's possible to take a to b. Proof. To be written.

[^0]: https://codeforces.com/problemset/problem/1698/F

