Iberoamerican 2019/5 Evan Chen

Twitch Solves ISL

Episode 109

Problem

Don Miguel places a token in one of the $(n + 1)^2$ vertices determined by an $n \times n$ board. A move consists of moving the token from the vertex on which it is placed to an adjacent vertex which is at most $\sqrt{2}$ away, as long as it stays on the board. A path is a sequence of moves such that the token was in each one of the $(n + 1)^2$ vertices exactly once. What is the maximum number of diagonal moves (those of length $\sqrt{2}$) that a path can have in total?

Video

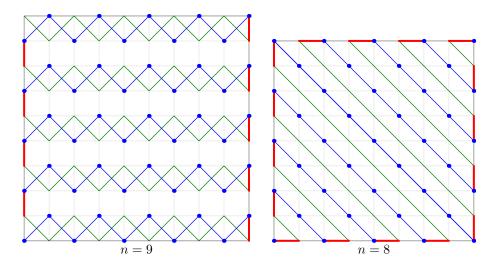
https://youtu.be/5Q7Qg30ti-g

External Link

https://aops.com/community/p13136470

Solution

When n is odd, the answer is $n^2 + n$, while when n is even, the answer is n^2 . Constructions are shown below for n = 9 and n = 8 which obviously generalize.



To show the bound, impose coordinates (x, y) with $0 \le x \le n$ and $0 \le y \le n$, and color blue any point with $x + y \equiv 0 \pmod{2}$ (as shown in the examples above); else color it green (not drawn). Imagine taking our given path and deleting every orthogonal move of distance 1 (i.e. not $\sqrt{2}$). Doing this deletion gives us a bunch of *zigzags* — graph-theoretic paths of length 1 or more where every two adjacent vertices are $\sqrt{2}$ apart. The zigzags will alternate between passing through blue dots (we call these *blue zigzags*) and through green dots (we call these *green zigzags*).

Case where n **is even.** We give an estimate on the number of blue zigzags.

Claim. If n is even, there are at least n + 1 blue zigzags.

Proof. There are $(\frac{1}{2}n+1)^2$ blue dots in odd-numbered rows, and $(\frac{1}{2}n)^2$ blue dots in even-numbered rows. The difference between this is n+1. Since blue zigzags must alternate between odd-numbered rows and even-numbered rows, there must be at least n+1.

Since we know there are at least n + 1 blue zigzags, there must have been at least n green zigzags, so there were a total of at least 2n + 1 zigzags. In other words, there were at least 2n orthogonal moves in the original given path. So the number of diagonal steps is at most $((n + 1)^2 - 1) - 2n = n^2$.

Case where n **is odd.** The blue and green zigzags play the same role, so we bound both:

Claim (USAMO 2008/3). If n is odd, there are at least $\frac{n+1}{2}$ blue zigzags, and at least $\frac{n+1}{2}$ green zigzags.

Proof. This is USAMO 2008 problem 3 rotated by 90° .

Hence there were a total of at least n + 1 zigzags. In other words, there were at least n orthogonal moves in the original given path. So the number of diagonal steps is at most $((n + 1)^2 - 1) - (n + 1) = n^2 + n$.