Iberoamerican 2019/2 Evan Chen

TWITCH SOLVES ISL

Episode 109

Problem

Determine all polynomials P(x) with degree $n \ge 1$ and integer coefficients so that for every real number x,

 $P(x) = (x - P(0))(x - P(1))(x - P(2)) \cdots (x - P(n - 1)).$

Video

https://youtu.be/_910tUwJMjQ

External Link

https://aops.com/community/p13131585

Solution

The answer is P(x) = x only.

For n = 1 it's easy to check that P(x) = x is the only solution. We prove there are no others.

Claim. If n > 1, any potential solution would need to have P(0) = 0.

Proof. If not, plug in x = 0 and cancel P(0) to get

$$1 = (-1)^n P(1) P(2) \dots P(n-1).$$

So we'd need to have $P(k) = \pm 1$ for k = 1, ..., n-1. However, $P(1) \neq 0$, so actually P(k) = -1 for k = 1, ..., n-1. In other words $P(x) = x(x+1)^{n-1}$, which doesn't work for $n \geq 2$.

We manually bash n = 2 now: if $P(x) = x^2 + bx$ then we'd need $P(x) = x^2 + bx = (x - 0)(x - (1 + b))$, which is impossible.

Now assume $n \geq 3$.

Claim. For k = 3, 4, ..., n - 1, any potential solution would have P(k) = 0.

Proof. Note that by plugging in k, we get

$$P(k) = k \cdot (k - P(k)) \cdot T_k$$

for some integer T_k (namely $T_k = \prod_{\substack{1 \le i \le n-1 \\ i \ne k}} (k - P(i))$, but we don't need the actual value). This rearranges to

$$(1+kT_k)P(k) = k^2T_k.$$

However, $1 + kT_k$ shares no factors with k^2T_k . So this can only occur if $1 + kT_k \in \{-1, 1\}$ or $T_k = 0$. For $k \ge 3$, we extract P(k) = 0.

Now, we are left with $P(x) = x(x - P(1))(x - P(2))x^{n-3}$. So plug in x = 1 and x = 2:

$$P(1) = (1 - P(1))(1 - P(2))$$

$$P(2) = 2(2 - P(1))(2 - P(2)) \cdot 2^{n-3}$$

Solve to get $P(1) = \frac{2(2^n-2)}{2^n-8}$ and $P(2) = \frac{3 \cdot 2^n}{2^n+4}$. This means $n \neq 3$, and for n > 3 we have $2^n + 4 \nmid 3 \cdot 2^n$ (since $2^n + 4 \nmid -12$), so there are no other solutions.