All-Lincoln 2022/6

 Evan Chen

 Evan Chen}

Twitch Solves ISL

Episode 109

Problem

Consider acute triangle $A B C$. Let D, E, F be the A, B, C intouch points of $A B C$, and X, Y, Z as the arc midpoints of $B C, C A, A B$ in the circumcircle of $A B C$. Prove that the triangle bounded by the lines $X E, Y F, Z D$ has area at most half of the area of $A B C$.

Video

https://youtu.be/GEa2nOS1PBM

Solution

The following stronger claim is true:
Claim. Let $D E F$ be any triangle. Let $X Y Z$ be a triangle obtained from a homothety of ratio $\rho \geq 1$ whose center lies inside $\triangle D E F$. Then the triangle bounded by the lines $X E, Y F, Z D$ has area at most ρ of the area of $D E F$.

Proof. Brute-force bary on $\triangle D E F$. Let $\lambda=\rho-1 \geq 0$, and $\mu=\lambda^{-1}$. Also, let the homothety center be (u, v, w) for $u, v, w>0$ and $u+v+w=1$. Then

$$
\begin{aligned}
X & =(\lambda(v+w)+1,-\lambda v,-\lambda w) . \\
& =(v+w+\mu:-v:-w) \\
Y & =(-u: w+u+\mu:-w) \\
Z & =(-u:-v: u+v+\mu) \\
D Z \cap E X & =((u+v+\mu)(v+w+\mu): w v:-w(u+v+\mu)) \\
E X \cap F Y & =(-u(v+w+\mu):(v+w+\mu)(w+u+\mu): u w) \\
F Y \cap D Z & =(u v:-v(w+u+\mu):(w+u+\mu)(u+v+\mu)) .
\end{aligned}
$$

Direct computation gives that

$$
\frac{\operatorname{Area}(D Z \cap E X, E X \cap F Y, F Y \cap D Z)}{[D E F]}=\frac{\left(u v w+\prod_{\mathrm{cyc}}(u+v+\mu)\right)^{2}}{\prod_{\mathrm{cyc}}\left(\mu^{2}+(u+2 v) \mu+v(u+v+w)\right)} .
$$

Therefore, since $\rho=\mu^{-1}+1$, we need to show

$$
\begin{aligned}
\left(u v w+\prod_{\text {cyc }}(u+v+\mu)\right)^{2} & \leq\left(1+\frac{u+v+w}{\mu}\right) \\
& \cdot \prod_{\text {cyc }}\left(\mu^{2}+(u+2 v) \mu+v(u+v+w)\right) .
\end{aligned}
$$

However, using Sage reveals that

$$
\begin{aligned}
\text { RHS }- \text { LHS } & =\mu^{4}(u v+v w+w u) \\
& +\mu^{3}\left(4\left(u v^{2}+v w^{2}+w u^{2}\right)+2\left(u^{2} v+v^{2} w+w^{2} u\right)+9 u v w\right) \\
& +\mu^{2} \sum_{\text {cyc }}\left(u^{3} v+6 u^{2} v^{2}+6 u v^{3}+20 u^{2} v w\right) \\
& +\mu \sum_{\text {cyc }}\left(2 u^{3} v^{2}+4 u v^{4}+6 u^{2} v^{3}+19 u^{3} v w+32 u^{2} v^{2} w\right) \\
& +\sum_{\text {cyc }}\left(u^{3} v^{3}+u^{5} w+2 u^{2} v^{4}+8 u^{4} v w+19 u^{2} v w^{3}+20 u^{2} v^{3} w+12 u^{2} v^{2} w^{2}\right) \\
& +\frac{1}{\mu} \sum_{\text {cyc }}\left(u^{5} v w+4 u^{2} v^{4} w+4 u^{2} v w^{4}+6 u^{3} v^{3} w+12 u^{2} v^{2} w^{3}\right)
\end{aligned}
$$

$$
\geq 0 .
$$

Remark. Note that equality occurs if say $D=X$, which corresponds to $v=w=0$.
Less terrible proof of the claim, sent by Darij Grinberg. Let P be the center of the homothety, and let $U=D Z \cap E X$ and $V=F Y \cap D Z$ and $W=E X \cap F Y$. We must show that $[U V W] \leq \rho[D E F]$.

The line $F P$ intersects both (closed) segments $E P$ and $E D$, so it also intersects the closed segment $E X$ (since X is on the segment $D P$). In other words, W lies on the segment $E X$. On the other hand, the point U lies on the extension of this segment beyond X, since it lies between X and $E U \cap F D$ (because the point Z lies between P and F). Hence, the point X lies on the segment $W U$. Similarly, Y lies on the segment $V W$, and Z lies on the segment $U V$. As P lies inside $\triangle X Y Z$,

$$
[U V W]=[P X W Y]+[P Y V Z]+[P Z U X] .
$$

But since W and Y lie on the segments $E U$ and $E P$, we have

$$
[P X W Y] \leq[P X E]=\rho[P D E]
$$

and similarly (cyclically)

$$
[P Y V Z] \leq \rho[P E F], \quad[P Z U X] \leq \rho[P F D] .
$$

Summing these three inequalities yields

$$
[P X W Y]+[P Y V Z]+[P Z U X] \leq \rho[P D E]+\rho[P E F]+\rho[P F D]=\rho[D E F]
$$

as desired.
We now use the following theorem.
Theorem (Apparently not well-known). We have $[D E F] /[A B C]=2 R / r$, where r and R are the inradius and circumradius.
(This is possibly a bit overkill, as all that's needed is $R / r \geq 2$ here.)
Note that in the original problem, $\triangle D E F$ and $\triangle X Y Z$ are homothetic with ratio $\frac{Y Z}{E F}=\frac{R}{r}$. Their homothety center is the concurrence point X_{56} of lines $D X, E Y$ and $F Z$, so we'd be done upon showing:

Claim (Annoying interior analysis). When $\triangle A B C$ is acute, X_{56} lies inside $\triangle D E F$.
Proof. Let I denote the incenter, so I is the orthocenter of acute triangle $X Y Z$ and in particular lies inside acute triangle $D E F$. Then $\overline{Y Z}$ is the perpendicular bisector of $\overline{A I}$, while $\overline{E F}$ is perpendicular to $\overline{A I}$ at a point closer to I than A (because $\angle A<90^{\circ} \Longrightarrow$ $\angle E I F>90^{\circ}$). Hence $F=\overline{E F} \cap \overline{D F}$ lies inside $\triangle X Y Z$, and so $\overline{Z F}$ is an internal cevian of $\triangle X Y Z$. The same is true for $\overline{D X}$ and $\overline{E Y}$, and we're done.

