Putnam 2022 B4
 Evan Chen
 Twitch Solves ISL
 Episode 108

Problem

Find all integers n with $n \geq 4$ for which there exists a sequence of distinct real numbers x_{1}, \ldots, x_{n} such that each of the sets

$$
\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{2}, x_{3}, x_{4}\right\}, \ldots,\left\{x_{n-2}, x_{n-1}, x_{n}\right\},\left\{x_{n-1}, x_{n}, x_{1}\right\}, \text { and }\left\{x_{n}, x_{1}, x_{2}\right\}
$$

forms a 3 -term arithmetic progression when arranged in increasing order.

Video

https://youtu.be/C9WhZldyMuc

External Link

https://aops.com/community/p26632989

Solution

The answer is $3 \mid n$.
Proof of necessity. By scaling we may assume WLOG that $x_{1}=0$ and $x_{2}=1$. Now if $\{a, b, c\}$ is an arithmetic progression in some order, then in general

$$
c \in\left\{2 b-a, 2 a-b, \frac{a+b}{2}\right\}
$$

and so in any valid sequence of x_{i} 's, we find that every x_{i} is a rational number whose denominator is a power of 2 (by induction, starting from x_{1} and x_{2} and propagating to x_{3}, x_{4}, \ldots.

This means it's possible to take modulo 3 .
When we do this we find every triple consists of $0(\bmod 3), 1(\bmod 3), 2(\bmod 3)$ in some order; more precisely induction gives

$$
x_{i}=\left\{\begin{array}{llll}
1 & \bmod 3 & i \equiv 1 & \bmod 3 \\
2 & \bmod 3 & i \equiv 2 & \bmod 3 \\
0 & \bmod 3 & i \equiv 0 & \bmod 3 .
\end{array}\right.
$$

Since indices wrap modulo n, this forces $3 \mid n$.
Construction. For $k \geq 1$, we give a construction valid for $n=(2 k+1)+4+k+1=3 k+6$:

$$
(1,3,5,7, \ldots, 4 k-1,4 k+1,4 k, 4 k+2,4 k-4,4 k-8,4 k-12, \ldots, 4,0,2) .
$$

For $k=9$ and $n=33$ it is illustrated below; this was first posted by MarkBcc168 for $k=5$ and $n=21$.

We meanwhile use ($1,3,5,4,6,2$) for $n=6$.

