Brazil 2022/6

Evan Chen

Twitch Solves ISL

Episode 108

Problem

Some cells of a 10×10 grid are colored blue. A set of six cells is called gremista when the cells are the intersection of three rows and two columns, or two rows and three columns, and are painted blue. Determine the greatest value of n for which it is possible to color n chessboard cells blue such that there is not a gremista set.

Video

https://youtu.be/C9WhZldyMuc

External Link

https://aops.com/community/p26563956

Solution

The answer is 46 . Call a grid valid if no gremista cells exist.

Construction. The construction is shown below in the thick green border, which encloses a valid construction of a 10×10.

The reason for the "extra" row and column is that this construction is actually obtained by taking an 11×11 grid and using cells $\{y, y+1, y+2, y+4, y+7\}(\bmod 11)$ in the y^{\prime} th row; this gives a valid 11×11 grid, and deleting a single row and column of a valid 11×11 will always leave a valid 10×10.

Bound. We start with:
Claim. There must be at most 47 blue cells in a valid 10×10 grid. Also, if such a valid grid did exist, then there exists seven columns with at least 35 blue cells among them.

Proof. Let a_{i} be the number of blue cells in the i th column. Then the usual doublecounting argument gives

$$
\sum_{1}^{10}\binom{a_{i}}{2} \leq 2\binom{10}{2}=90
$$

Because $\binom{*}{2}$ is convex, for a fixed value of $\sum a_{i}$ the left-hand side is minimized when any two a_{i} differ by at most one. The unique choices of a_{i} (up to permutation) for which $\sum a_{i}=47$ and $\sum\binom{a_{i}}{2}<90$ are $3\binom{4}{2}+7\binom{5}{2}=88$ and $4\binom{4}{2}+5\binom{5}{2}+\binom{6}{2}=89$; no such choices exist with $\sum a_{i} \geq 48$.

But now we can repeat the same convexity argument on just those seven columns; assuming for contradiction an example for 47 did exist, let b_{i} denote the number of blue cells in the i th row and in those seven columns. From $\sum b_{i} \geq 35$ we have

$$
\sum_{1}^{10}\binom{b_{i}}{2} \leq 2\binom{7}{2}=42
$$

but

$$
\sum_{1}^{10}\binom{b_{i}}{2}>10\binom{3.5}{2}=43.75>42 .
$$

Another proof of bound (Jiahe Liu). Assume for contradiction there is a valid grid of 47 blue cells (if there are more than 47 cells, arbitrarily uncolor some cells). Let $a \leq b \leq c$ be the counts of blue cells in the rows with the fewest blue cells (ties broken arbitrarily).

Claim. We must have $a+b+c \leq 12$.
Proof. If $c \leq 4$, the result is clear. When $c \geq 5$, the other seven rows need to have at least c cells, so we have

$$
47 \geq a+b+8 c \Longrightarrow a+b+c \leq 47-7 c \leq 12
$$

Thus the remaining seven rows have at least 35 blue cells among them. We can now finish as in the first solution.

