DEMO Mock 2022/1

Evan Chen

Twitch Solves ISL

Episode 107

Problem

Determine all positive integers N where the equations

$$
a b-c d=a+b+c+d=N
$$

have at least one solution for positive integers a, b, c, and d.

Video

https://youtu.be/XUAVeDk2GsY

External Link

https://aops.com/community/p25441644

Solution

Ignore N for a moment and write the equation as $(a-1)(b-1)=(c+1)(d+1)$. Then the factor lemma shows that it's equivalent to

$$
\underbrace{(a-1)}_{p q} \underbrace{(b-1)}_{r s}=\underbrace{(c+1)}_{p r} \underbrace{(d+1)}_{q s}
$$

So now $N=a+b+c+d=p q+r s+p r+q s=(p+s)(r+q)$.
The only caveat is we can't find $p=r=1$ or $q=s=1$. So we get that any composite N other than $N=4$ or $N=6$ is OK.

