Twitch 106.4 Evan Chen

TWITCH SOLVES ISL

Episode 106

Problem

Given an equilateral triangle ABC and a point P within ABC, construct the perpendicular ℓ_A to AP through P. Let A_1 and A_2 be the intersections of ℓ_A through AB and AC, respectively, and let the intersection of BA_2 and CA_1 be called A'. Construct B' and C' in a similar manner. Prove that AA', BB', and CC' are concurrent.

Video

https://youtu.be/_HtErqKU_zQ

Solution

Let line AA' meet line BC at X; also let $\ell_A \cap BC = X'$.

Claim 1. (BC; XX') = -1.

Proof. Harmonic bundle picture.

So by Ceva's theorem, to prove the concurrence, it's equivalent (by Menelaus) to prove the collinearity of X'Y'Z'.

But this line has a name: it's the *orthotransversal* of P with respect to $\triangle ABC$.