Twitch 106.4

Evan Chen

Twitch Solves ISL
Episode 106

Problem

Given an equilateral triangle $A B C$ and a point P within ABC, construct the perpendicular ℓ_{A} to $A P$ through P. Let A_{1} and A_{2} be the intersections of ℓ_{A} through $A B$ and $A C$, respectively, and let the intersection of $B A_{2}$ and $C A_{1}$ be called A^{\prime}. Construct B^{\prime} and C^{\prime} in a similar manner. Prove that $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are concurrent.

Video

https://youtu.be/_HtErqKU_zQ

Solution

Let line $A A^{\prime}$ meet line $B C$ at X; also let $\ell_{A} \cap B C=X^{\prime}$.
Claim 1. $\left(B C ; X X^{\prime}\right)=-1$.
Proof. Harmonic bundle picture.
So by Ceva's theorem, to prove the concurrence, it's equivalent (by Menelaus) to prove the collinearity of $X^{\prime} Y^{\prime} Z^{\prime}$.

But this line has a name: it's the orthotransversal of P with respect to $\triangle A B C$.

