Twitch 106.1
 Evan Chen

Twitch Solves ISL
Episode 106

Problem

Given an equilateral triangle $A B C$ and a point X, let the reflection of X about $A B$ be X_{C}, and the other reflections defined similarly. Prove or disprove whether or not $A X_{A}$, $B X_{B}$, and $C X_{C}$ are concurrent or parallel.

Video

https://youtu.be/9iE3J43Sozk

Solution

Use complex numbers with $(A B C)$ the unit circle. Ignore for now the condition that $A B C$ is equilateral to retain symmetry. We know that

$$
x_{A}=b+c-b c \bar{x}
$$

The equation $Z \in A X_{A}$ is then given by

$$
0=\operatorname{det}\left[\begin{array}{ccc}
a & \bar{a} & 1 \\
b+c-b c \bar{x} & \bar{b}+\bar{c}-\bar{b} \bar{x} x & 1 \\
z & \bar{z} & 1
\end{array}\right]
$$

or

$$
(\bar{a} b+\bar{a} c-\bar{a} b c \bar{x})-(a \bar{b}+a \bar{c}-a \bar{b} \bar{c} x)=(\bar{a}-\bar{b}-\bar{c}+\bar{b} \bar{c} x) z-(a-b-c+b c \bar{x}) \bar{z}
$$

Consider the analogous equations for $B X_{B}$ and $C X_{C}$ to get a 3×3 determinant.
Claim. When $a=1, b=e^{\frac{2}{3} \pi i}, c=e^{\frac{4}{3} \pi i}$, this determinant vanishes. In fact, the sum of the rows is the zero vector.

Proof. Note that $a b c=1, a^{-1}+b^{-1}+c^{-1}=a+b+c=a^{2}+b^{2}+c^{2}=0$.

$$
\begin{aligned}
\sum_{\text {cyc }} \bar{a} b+\bar{a} c & =\sum_{\text {cyc }} \bar{a}(-a)=-3 \\
\sum_{\text {cyc }} \bar{a} b c \bar{x} \bar{c} & =\sum_{\text {cyc }} a^{-2} \bar{x}=0 \\
\sum_{\text {cyc }} a \bar{c} \bar{x} x & =\sum_{\text {cyc }} a^{2} x=0 \\
\sum_{\text {cyc }}(\bar{a}-\bar{b}-\bar{c}) & =\sum_{\text {cyc }} 2 \bar{a}=0 \\
\sum_{\text {cyc }}(a-b-c) & =\sum_{\text {cyc }} 2 a=0 \\
\sum_{\text {cyc }}(\bar{b} \bar{c}) x & =\sum_{\text {cyc }} a x=0 \\
\sum_{\text {cyc }} b c \bar{x} & =\sum_{\text {cyc }} a^{-1} x=0 .
\end{aligned}
$$

