ToT Spring 2004 S-A5

Evan Chen

Twitch Solves ISL
Episode 106

Problem

A circle and a parabola share exactly two points, A and B. Suppose they are tangent at A (that is, the tangent lines to the circle and parabola at A coincide). Does it follow that they are also tangent at B ?

Video

https://youtu.be/tAXEpNhZG_Q

External Link

https://aops.com/community/p14147724

Solution

It does not follow; for a counterexample use the construction

$$
y=x^{2} \quad \text { and } \quad(x+4)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{125}{4} .
$$

See figure below. They meet at $A=(1,1)$ and $B=(-3,9)$.

Remark (Motivation for these numbers). If we write the parabola as $y=x^{2}$ WLOG, and the circle as $(x-\alpha)^{2}+(y-\beta)^{2}=\gamma^{2}$, then the intersections are controlled by a quartic in x, namely:

$$
\begin{aligned}
0 & =(x-\alpha)^{2}+\left(x^{2}-\beta\right)^{2}-\gamma^{2} \\
& =x^{4}+(1-2 \beta) x^{2}-2 \alpha x+\left(\alpha^{2}+\beta^{2}-\gamma^{2}\right) .
\end{aligned}
$$

To fail the problem, we need this quartic to have a "triple root" at A. The above example is constructed by choosing $(x-1)^{3}(x+3)$ as the quartic and equating coefficients.

