Brazil 2022/2
 Evan Chen
 Twitch Solves ISL
 Episode 106

Problem

Let $A B C$ be an acute triangle, with $A B<A C$. Let K be the midpoint of the arc $B C$ that does not contain A and let P be the midpoint of $B C$. Let I_{B}, I_{C} be the B-excenter and C-excenter of $A B C$, respectively. Let Q be the reflection of K with respect to A. Prove that the points P, Q, I_{B}, I_{C} are concyclic.

Video

https://youtu.be/w0Hvkqf0aQ8

External Link

https://aops.com/community/c6h2965497p26563619

Solution

Let I_{A} be the A-excenter, and let $H=\overline{A I K} \cap \overline{B C}$.

- Then by Brokard's theorem on cyclic quadrilateral $B I C I_{A}$, it follows that $\triangle I_{B} I_{C} H$ is self-polar to this circle.
- In particular K is the orthocenter. Equivalently, H is the orthocenter of $\triangle I_{B} K I_{C}$.
- Define $T=\overline{I_{B} I_{C}} \cap \overline{B C}$. Then $(T H ; B C)=-1$.
- I claim that $I_{B} I_{C} P H$ is cyclic. Indeed, $T H \cdot T P=T B \cdot T C=T I_{B} \cdot I_{C}$.
- The reflection of the orthocenter K of $\Delta I_{B} I_{C} H$ over a side $\overline{I_{B} I_{C}}$ then coincides with Q, which now lies on $\left(P H I_{B} I_{C}\right)$.

