Iberoamerican 2022/5

Evan Chen

Twitch Solves ISL

Episode 104

Problem

Let $A B C$ be an acute triangle with circumcircle Γ. Let P and Q be points in the half plane defined by $B C$ containing A, such that $B P$ and $C Q$ are tangents to Γ and $P B=B C=C Q$. Let K and L be points on the external bisector of $\angle C A B$, such that $B K=B A, C L=C A$. Let M be the intersection point of the lines $P K$ and $Q L$. Prove that $M K=M L$.

Video

https://youtu.be/dhCir0TYqIg

External Link

https://aops.com/community/p26232444

Solution

Let Y be the arc midpoint of arc $B A C$.
Claim. P is reflection of C across line $Y B$.
Proof. It's easy to check $\overline{B Y}$ bisects $\angle P B C$.
Claim. PKBY is cyclic.
Proof. $\measuredangle B P Y=\measuredangle Y C B=\measuredangle Y A B=\measuredangle K A B=\measuredangle B K A=\measuredangle B K Y$.
Now $\measuredangle P K Y=\measuredangle P B Y=\measuredangle Y C Q=\measuredangle Y L Q$ so $\triangle M K L$ has isosceles base angles.

Now $\measuredangle P K Y=\measuredangle P B Y=\measuredangle Y C Q=\measuredangle Y L Q$ so $\triangle M K L$ has isosceles base angles.
Remark. Conjectures to prove $(A P Q)$ is tangent to $\overline{K L}$ and M lies on the A-symmedian.

