Iberoamerican 2022/5

Evan Chen

TWITCH SOLVES ISL

Episode 104

Problem

Let ABC be an acute triangle with circumcircle Γ . Let P and Q be points in the half plane defined by BC containing A, such that BP and CQ are tangents to Γ and PB = BC = CQ. Let K and L be points on the external bisector of $\angle CAB$, such that BK = BA, CL = CA. Let M be the intersection point of the lines PK and QL. Prove that MK = ML.

Video

https://youtu.be/dhCirOTYqIg

External Link

https://aops.com/community/p26232444

Solution

Let Y be the arc midpoint of arc BAC.

Claim. P is reflection of C across line YB.

Proof. It's easy to check \overline{BY} bisects $\angle PBC$.

Claim. PKBY is cyclic.

Proof.
$$\angle BPY = \angle YCB = \angle YAB = \angle KAB = \angle BKA = \angle BKY$$
.

Now $\angle PKY = \angle PBY = \angle YCQ = \angle YLQ$ so $\triangle MKL$ has isosceles base angles.

Now $\angle PKY = \angle PBY = \angle YCQ = \angle YLQ$ so $\triangle MKL$ has isosceles base angles.

Remark. Conjectures to prove (APQ) is tangent to \overline{KL} and M lies on the A-symmedian.