USEMO 2022/4 Evan Chen

TWITCH SOLVES ISL

Episode 103

Problem

Let ABCD be a cyclic quadrilateral whose opposite sides are not parallel. Suppose points P, Q, R, S lie in the interiors of segments AB, BC, CD, DA, respectively, such that

 $\angle PDA = \angle PCB, \quad \angle QAB = \angle QDC, \quad \angle RBC = \angle RAD, \text{ and } \angle SCD = \angle SBA.$

Let \overline{AQ} intersect \overline{BS} at X, and \overline{DQ} intersect \overline{CS} at Y. Prove that lines \overline{PR} and \overline{XY} are either parallel or coincide.

Video

https://youtu.be/dC9VpiGVRqs

External Link

https://aops.com/community/p26379724

Solution

We present two approaches. The first is based on the points $U = \overline{AD} \cap \overline{BC}$ and $V = \overline{AB} \cap \overline{CD}$. The latter is based on $E = \overline{AC} \cap \overline{BD}$.

First solution (author's) Let $U = \overline{AD} \cap \overline{BC}$ and $V = \overline{AB} \cap \overline{CD}$.

Claim. We have US = UQ and VP = VR. *Proof.* We have

$$\measuredangle BSA = \measuredangle BAS + \measuredangle SBA = \measuredangle BCD + \measuredangle DCS = \measuredangle BCS$$

hence

$$US^2 = UB \cdot UC.$$

Similarly, $UQ^2 = UA \cdot UD = UB \cdot UC$. So, US = UQ; similarly VP = VR.

Claim. Quadrilateral SXQY is a kite (with SX = SY and QX = QY).

Proof. We have

$$\measuredangle BSQ = \measuredangle USQ - \measuredangle USB = \measuredangle SQU - \measuredangle SCB = \measuredangle QSC$$

so \overline{SQ} bisects $\angle BSC$; similarly it bisects $\angle AQD$.

Claim. The internal bisectors of $\angle U$ and $\angle V$ are perpendicular. *Proof.* The angle between these angle bisectors equals

$$\frac{1}{2} \angle DUC + \angle DAV + \frac{1}{2} \angle BVC$$

= 90° - $\frac{\angle ADC}{2} - \frac{\angle DCB}{2} + \angle BCD + 90° - \frac{\angle ABC}{2} - \frac{\angle DCB}{2}$
= 90°.

As \overline{SQ} and \overline{PR} are perpendicular to the internal bisectors of $\angle U$ and $\angle V$ by the first claim, so by the third claim $\overline{QS} \perp \overline{PR}$. Meanwhile the second claim gives that \overline{XY} is perpendicular to \overline{SQ} , completing the problem.

Second solution due to Nikolai Beluhov Let $E = \overline{AC} \cap \overline{BD}$. Then *E* lies on \overline{XY} by Pappus's theorem.

Claim. Line *XEY* is the interior bisector of $\angle AEB$ and $\angle CED$.

Proof. The angle conditions imply that X and Y are corresponding points in the two similar triangles AEB and DEC. Hence, $\angle AEX = \angle DEY$ and $\angle BEX = \angle CEY$. Since segments EX and EY are collinear, we're done.

Introduce the points

 $X' = \overline{BR} \cap \overline{CP}$ and $Y' = \overline{AR} \cap \overline{DP}$.

By the same argument as before, line X'EY' is the internal angle bisector of angles $\angle AED$ and $\angle BEC$.

Claim. Quadrilateral PX'RY' is a kite (with PX' = PY' and RX' = RY').

Proof. Because X' and Y' are corresponding points in $\triangle BEC$ and $\triangle AED$,

$$\angle RX'Y' = 180^{\circ} - \angle BX'E = 180^{\circ} - \angle AY'E = \angle RY'X',$$

and so RX' = RY'. Similarly, PX' = PY'.

Thus, \overline{PR} is perpendicular to $\overline{X'EY'}$, hence parallel to the interior bisector of $\angle AEB$ and $\angle CED$. Together with the first claim, we're done.

Remark. It's possible to write up this solution without ever defining X' and Y'. The idea is to instead prove SXQY is a kite (which is natural since X and Y are already marked) and hence obtain the sentence " \overline{SQ} is parallel to the internal angle bisector of $\angle AED$ and $\angle BEC$ " (using the first claim). Then cyclically shift the labels in to get the sentence " \overline{PR} is parallel to the internal angle bisector of $\angle DEC$ and $\angle AEB$ ".