IMO 1998/4

Evan Chen

Twitch Solves ISL
Episode 102

Problem

Determine all pairs (x, y) of positive integers such that $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$.

Video

https://youtu.be/Gv7-k9dXa6s

External Link

https://aops.com/community/p124428

Solution

The answer is $\left(7 k^{2}, 7 k\right)$ for all $k \geq 1$, as well as $(11,1)$ and $(49,1)$.
We are given $x y^{2}+y+7 \mid x^{2} y+x+y$. Multiplying the right-hand side by y gives

$$
x y^{2}+y+7 \mid x^{2} y^{2}+x y+y^{2}
$$

Then subtracting x times the left-hand side gives

$$
x y^{2}+y+7 \mid y^{2}-7 x
$$

We consider cases based on the sign of $y^{2}=7 x$.

- If $y^{2}>7 x$, then $0<y^{2}-7 x<x y^{2}+y+7$, contradiction.
- If $y^{2}=7 x$, let $y=7 k$, so $x=7 k^{2}$. Plugging this back in to the original equation reads

$$
343 k^{4}+7 k+7 \mid 343 k^{5}+7 k^{2}+7 k
$$

which is always valid, hence these are all solutions.

- If $y^{2}<7 x$, then $\left|y^{2}-7 x\right| \leq 7 x$, so $y \in\{1,2\}$.

When $y=1$ we get

$$
x+8\left|x^{2}+x+1 \Longleftrightarrow x+8\right| 64-8+1=57
$$

This has solutions $x=11$ and $x=49$.
When $y=2$

$$
\begin{aligned}
4 x+9 \mid & 2 x^{2}+x+2 \\
& \Longrightarrow 4 x+9 \mid 16 x^{2}+8 x+16 \\
& \Longrightarrow 4 x+9 \mid 81-18+16=79
\end{aligned}
$$

which never occurs.

