IMO 1998/4 Evan Chen

TWITCH SOLVES ISL

Episode 102

Problem

Determine all pairs (x, y) of positive integers such that $x^2y + x + y$ is divisible by $xy^2 + y + 7$.

Video

https://youtu.be/Gv7-k9dXa6s

Solution

The answer is $(7k^2, 7k)$ for all $k \ge 1$, as well as (11, 1) and (49, 1). We are given $xy^2 + y + 7 \mid x^2y + x + y$. Multiplying the right-hand side by y gives

 $xy^{2} + y + 7 \mid x^{2}y^{2} + xy + y^{2}$

Then subtracting x times the left-hand side gives

$$xy^2 + y + 7 \mid y^2 - 7x.$$

We consider cases based on the sign of $y^2 = 7x$.

- If $y^2 > 7x$, then $0 < y^2 7x < xy^2 + y + 7$, contradiction.
- If $y^2 = 7x$, let y = 7k, so $x = 7k^2$. Plugging this back in to the original equation reads ~

$$343k^4 + 7k + 7 \mid 343k^5 + 7k^2 + 7k$$

which is always valid, hence these are all solutions.

• If $y^2 < 7x$, then $|y^2 - 7x| \le 7x$, so $y \in \{1, 2\}$. When y = 1 we get

$$x+8 \mid x^2+x+1 \iff x+8 \mid 64-8+1=57.$$

This has solutions x = 11 and x = 49.

When y = 2

$$4x + 9 \mid 2x^{2} + x + 2 \\ \implies 4x + 9 \mid 16x^{2} + 8x + 16 \\ \implies 4x + 9 \mid 81 - 18 + 16 = 79$$

which never occurs.