IMO 1997/2

Evan Chen
Twitch Solves ISL
Episode 101

Problem

It is known that $\angle B A C$ is the smallest angle in the triangle $A B C$. The points B and C divide the circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B and C which does not contain A. The perpendicular bisectors of $A B$ and $A C$ meet the line $A U$ at V and W, respectively. The lines $B V$ and $C W$ meet at T.

Show that $A U=T B+T C$.

Video

https://youtu.be/HytKqrMVGpc

External Link

https://aops.com/community/p356701

Solution

Let $\overline{B T V}$ meet the circle again at U_{1}, so that $A U_{1} U B$ is an isosceles trapezoid. Define U_{2} similarly.

Now from the isosceles trapezoids we get

$$
A U=B U_{1}=B T+T U_{1}=B T+T C
$$

as desired.

